تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,544 |
تعداد دریافت فایل اصل مقاله | 15,213,653 |
مطالعه تجربی تاثیر نسبت پرشدگی، میدان مغناطیسی و زاویه شیب بر عملکرد حرارتی در یک لوله گرمایی نوسانی سه بعدی | ||
مهندسی مکانیک دانشگاه تبریز | ||
دوره 52، شماره 4 - شماره پیاپی 101، بهمن 1401، صفحه 153-164 اصل مقاله (679.17 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2022.51884.3115 | ||
نویسندگان | ||
علیرضا علیزاده جاجرم1؛ حمیدرضا گشایشی* 2؛ کاظم بشیرنژاد3؛ ایمان زحمتکش2 | ||
1دانشجوی دکتری، گروه مکانیک، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران | ||
2دانشیار، گروه مکانیک، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران | ||
3استادیار، گروه مکانیک، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران | ||
چکیده | ||
در این پژوهش عملکرد یک لوله گرمایی نوسانی سه بعدی در زوایای مختلف استقرار از صفر تا 90 درجه با سیال عامل آب مقطر و نانوسیال به صورت تجربی مورد بررسی و مقایسه قرار گرفته است. نانوسیال Fe3O4 با کسر جرمی 1/0 درصد تهیه و برای پایداری آن از سورفکتانت تترامتیل آمونیوم هیدرواکسید استفاده شد. ابتدا آزمایشات در شارهای گرمای ورودی مختلف (30 تا 300 وات) و نسبتهای پرشدگی 50 و 60 درصد انجام و نسبت پرشدگی بهینه (50%) مشخص گردید. سپس با این مقدار، عملکرد حرارتی لوله گرمایی نوسانی در زوایای مختلف بدون حضور و همچنین با اعمال میدان مغناطیسی ارزیابی شد. نتایج آزمایشات نشان داد که نانوذرات Fe3O4 میتوانند عملکرد گرمایی دستگاه را بهبود بخشند. همچنین مشخص شد که نسبت پرشدگی بهینه برای این دستگاه 50 درصد میباشد. با افزایش شار گرمای ورودی، مقاومت گرمایی لوله گرمایی کاهش مییابد. علاوه بر این نتایج نشان داد که زاویه شیب لوله گرمایی تأثیر قابل توجهی بر عملکرد لوله گرمایی دارد. در حالت افقی عملکرد دستگاه اصلا مناسب نبود، اما با اعمال میدان مغناطیسی، دستگاه میتواند به کار خود ادامه دهد. | ||
کلیدواژهها | ||
لوله گرمایی نوسانی سه بعدی؛ نسبت پرشدگی؛ زاویه استقرار؛ نانوسیال مغناطیسی؛ میدان مغناطیسی؛ مقاومت گرمایی | ||
مراجع | ||
[1] Akachi H., Structure of a heat pipe, ed: Google Patents, 1990. [2] Mameli M., Besagni G., Bansal P. K., and Markides C. N., Innovations in pulsating heat pipes: From origins to future perspectives, Applied Thermal Engineering, Vol. 203, p. 117921, 2022/02/25/ 2022. [3] Qu J., Wang Q., and Sun Q., Lower limit of internal diameter for oscillating heat pipes: a theoretical model, International Journal of Thermal Sciences, Vol. 110, pp. 174-185, 2016. [4] Yang H., Khandekar S., and Groll M., Operational limit of closed loop pulsating heat pipes, Applied Thermal Engineering, Vol. 28, No. 1, pp. 49-59, 2008. [5] Khandekar S., Dollinger N., and Groll M., Understanding operational regimes of closed loop pulsating heat pipes: an experimental study, Applied Thermal Engineering, Vol. 23, No. 6, pp. 707-719, 2003. [6] Lee J., Joo Y., and Kim S. J., Effects of the number of turns and the inclination angle on the operating limit of micro pulsating heat pipes, International Journal of Heat and Mass Transfer, Vol. 124, pp. 1172-1180, 2018. [7] Li M., Li L., and Xu D., Effect of number of turns and configurations on the heat transfer performance of helium cryogenic pulsating heat pipe, Cryogenics, Vol. 96, pp. 159-165, 2018. [8] Sedighi E., Amarloo A., and Shafii B., Numerical and experimental investigation of flat-plate pulsating heat pipes with extra branches in the evaporator section, International Journal of Heat and Mass Transfer, Vol. 126, pp. 431-441, 2018. [9] حقایق ش. سعیدی م. ح. شفیعی م. ب، بررسی تجربی لولههای حرارتی نوسانی و تأثیر تغییر طول ناحیه تبخیرکننده بر عملکرد آن، مجله مهندسی مکانیک مدرس، د. 13، ش. 15، ص 110-115، 1392. [10] Zufar M., Gunnasegaran P., Kumar H., and Ng K., Numerical and experimental investigations of hybrid nanofluids on pulsating heat pipe performance, International Journal of Heat and Mass Transfer, Vol. 146, p. 118887, 2020. [11] Nazari M. A., Ahmadi M. H., Ghasempour R., and Shafii M. B., How to improve the thermal performance of pulsating heat pipes: A review on working fluid, Renewable and Sustainable Energy Reviews, Vol. 91, pp. 630-638, 2018. [12] عباسعلیزاده م. و اکبری کنگرلوئی ر.، بررسی تجربی عملکرد گرمایی لوله گرمایی نوسانی داخل شیاردار با نانوسیال آب-MWCNT, مجله مهندسی مکانیک دانشگاه تبریز، د. 52، ش. 1، ص 217-225، 1401. [13] Goshayeshi H. R. and Chaer I., Comparison of copper and glass oscillating heat pipes with Fe2O3 under magnetic field, International Journal of Low-Carbon Technologies, Vol. 11, No. 4, pp. 455-459, 2016. [14] Mameli M., Marengo M., and Zinna S., Numerical model of a multi-turn closed loop pulsating heat pipe: effects of the local pressure losses due to meanderings, International Journal of Heat and Mass Transfer, Vol. 55, No. 4, pp. 1036-1047, 2012. [15] Ma H., Oscillating heat pipes. Springer, 2015. [16] Charoensawan P., Khandekar S., Groll M., and Terdtoon P., Closed loop pulsating heat pipes: Part A: parametric experimental investigations, Applied thermal engineering, Vol. 23, No. 16, pp. 2009-2020, 2003. [17] Yongxi M. and Zhang H., Analysis of heat transfer performance of oscillating heat pipes based on a central composite design, Chinese Journal of Chemical Engineering, Vol. 14, No. 2, pp. 223-228, 2006. [18] Lin Z., Wang S., Huo J., Hu Y., Chen J., Zhang W. et al., Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes, Applied Thermal Engineering, Vol. 31, No. 14-15, pp. 2221-2229, 2011. [19] Alqahtani A. A., Edwardson S., Marengo M., and Bertola V., Performance of flat-plate, flexible polymeric pulsating heat pipes at different bending angles, Applied Thermal Engineering, Vol. 216, p. 118948, 2022/11/05/ 2022. [20] Mohammadi M., Mohammadi M., Ghahremani A. R., Shafii M. B., and Mohammadi N., Experimental investigation of thermal resistance of a ferrofluidic closed-loop pulsating heat pipe, Heat transfer engineering, Vol. 35, No. 1, pp. 25-33, 2014. [21] Heris S. Z., Salehi H., and Noie S., The effect of magnetic field and nanofluid on thermal performance of two-phase closed thermosyphon (TPCT), International Journal of Physical Sciences, Vol. 7, No. 4, pp. 534-543, 2012. [22] Farrokh M., Goodarz T., Samad J., Javid N., and Amin H., Analysis of Entropy Generation of a Magneto-Hydrodynamic Flow Through the Operation of an Unlooped Pulsating Heat Pipe, Journal of Heat Transfer, Vol. 140, No. 8, 2018. [23] Mameli M., Manno V., Filippeschi S., and Marengo M., Thermal instability of a closed loop pulsating heat pipe: combined effect of orientation and filling ratio, Experimental Thermal and Fluid Science, Vol. 59, pp. 222-229, 2014. [24] Davari H., Goshayeshi H. R., Öztop H. F., and Chaer I., Experimental investigation of oscillating heat pipe efficiency for a novel condenser by using Fe3O4 nanofluid, Journal of Thermal Analysis and Calorimetry, Vol. 140, No. 6, pp. 2605-2614, 2020. [25] Mohammadfam Y., Heris S. Z., and Khazini L., Experimental Investigation of Fe3O4/hydraulic oil magnetic nanofluids rheological properties and performance in the presence of magnetic field, Tribology International, Vol. 142, p. 105995, 2020. [26] Zahmatkesh I., Effect of magnetic field orientation on nanofluid free convection in a porous cavity: a heat visualization study, Journal of Thermal Engineering, Vol. 6, No. 1, pp. 170-186, 2020. [27] Gandomkar A., Saidi M., Shafii M., Vandadi M., and Kalan K., Visualization and comparative investigations of pulsating ferro-fluid heat pipe, Applied Thermal Engineering, Vol. 116, pp. 56-65, 2017. [28] Goshayeshi H. R., Goodarzi M., Safaei M. R., and Dahari M., Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field, Experimental Thermal and Fluid Science, Vol. 74, pp. 265-270, 2016. [29] Markal B. and Aksoy K., The combined effects of filling ratio and inclination angle on thermal performance of a closed loop pulsating heat pipe, Heat and Mass Transfer, Vol. 57, No. 5, pp. 751-763, 2021. [30] Qu J., Zuo A., Liu H., Zhao J., and Rao Z., Three-Dimensional oscillating heat pipes with novel structure for latent heat thermal energy storage application, Applied Thermal Engineering, Vol. 187, p. 116574, 2021. [31] Kangarluei R. A., Ranjbari M. A., and Ramezanpour A., An experimental comparison of thermal performance: Smooth and inner-grooved closed loop pulsating heat pipes in different angles, International Communications in Heat and Mass Transfer, Vol. 125, p. 105306, 2021. [32] Lei J., Luo Z., Qing S., Huang X., and Li F., Effect of surfactants on the stability, rheological properties, and thermal conductivity of Fe3O4 nanofluids, Powder Technology, Vol. 399, p. 117197, 2022. [33] Wang J., Li G., Li T., Zeng M., and Sundén B., Effect of various surfactants on stability and thermophysical properties of nanofluids, Journal of Thermal Analysis and Calorimetry, Vol. 143, No. 6, pp. 4057-4070, 2021. [34] اصلاحچی ع. نوبختی م. ح. شفیعی م., دیبایی بناب م. ح., بررسی تجربی انتقال گرمایی جابجایی اجباری فرو سیالFe3O4 در لولهی U-شکل تحت میدان مغناطیسی نوسانی، مجله مهندسی مکانیک دانشگاه تبریز، د. 51، ش. 4، ص 405-412، 1400. [35] Kang S.-W., Wang Y.-C., Liu Y.-C., and Lo H.-M., Visualization and thermal resistance measurements for a magnetic nanofluid pulsating heat pipe, Applied Thermal Engineering, Vol. 126, pp. 1044-1050, 2017/11/05/ 2017. [36] Zhao N., Zhao D., and Ma H., Experimental investigation of magnetic field effect on the magnetic nanofluid oscillating heat pipe, Journal of Thermal Science and Engineering Applications, Vol. 5, No. 1, p. 011005, 2013. [37] Taslimifar M., Mohammadi M., Afshin H., Saidi M. H., and Shafii M. B., Overall thermal performance of ferrofluidic open loop pulsating heat pipes: an experimental approach, International Journal of Thermal Sciences, Vol. 65, pp. 234-241, 2013. [38] Berger P., Adelman N. B., Beckman K. J., Campbell D. J., Ellis A. B., and Lisensky G. C., Preparation and properties of an aqueous ferrofluid, Journal of chemical education, Vol. 76, No. 7, p. 943, 1999. [39] Smoot C. and Ma H., Experimental investigation of a three-layer oscillating heat pipe, Journal of Heat Transfer, Vol. 136, No. 5, p. 051501, 2014. [40] Heris S. Z., Edalati Z., Noie S. H., and Mahian O., Experimental investigation of Al2O3/water nanofluid through equilateral triangular duct with constant wall heat flux in laminar flow, Heat Transfer Engineering, Vol. 35, No. 13, pp. 1173-1182, 2014. [41] Sedighi E., Amarloo A., and Shafii M., Experimental investigation of the thermal characteristics of single-turn pulsating heat pipes with an extra branch, International Journal of Thermal Sciences, Vol. 134, pp. 258-268, 2018. [42] Han X., Wang X., Zheng H., Xu X., and Chen G., Review of the development of pulsating heat pipe for heat dissipation, Renewable and Sustainable Energy Reviews, Vol. 59, pp. 692-709, 2016. [43] Xu R., Li X., Lei T., Wu Q., and Wang R., Operation characteristics of a gravity pulsating heat pipe under different heat inputs, International Journal of Heat and Mass Transfer, Vol. 189, p. 122731, 2022. [44] Winarta A., Putra N., Koestoer R. A., Pamitran A. S., and Hakim I. I., Experimental Investigation of a Large Scale-oscillating Heat Pipe at Different Inclinations, Mechanical Engineering, Vol. 10, No. 2, 2019. | ||
آمار تعداد مشاهده مقاله: 163 تعداد دریافت فایل اصل مقاله: 155 |