- [1] T. A. Abassy, M. A. El-Tawil, and H. El-Zoheiry, Modified variational iteration method for Boussinesq equation, Computers and Mathematics with Applications, 54(7-8) (2007), 955965.
- [2] A. Ali and N. H. M. Ali, On numerical solution of fractional order delay differential equation using Chebyshev collocation method, New Trends in Mathematical sciences, 6(1) (2018), 817.
- [3] M. Brics, J. Kaupu˘zs, and R. Mahnke, How to solve Fokker-Planck equation treating mixed eigenvalue spectrum?, Condensed Matter Physics, 16 (2013), 113.
- [4] A. V. Chechkin, J. Klafter, and I.M. Sokolov, Fractional Fokker-Planck equation for ultra-slow kinetics, Europhys Letters, 63(3) (2003), 326-32.
- [5] L. Cooke, D. Driessche, and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, Journal of Mathematical Biology, 39 (1999), 332352.
- [6] A. Y. Esmaeelzade, F. Behnaz, and J. Hosein, Numerical approach to simulate diffusion model of a fluid-flow in a porous media, Thermal Science, 25 (2021), 255-261.
- [7] A. Y. Esmaeelzade, H. Mesgarani, G. M. Moremedi, and M. Khoshkhahtinat, High accuracy numerical scheme for solving the space-time fractional advection-diffusion equation with convergence analysis, Alexandria Engineering Journal, 61 (2022), 217-225.
- [8] B. A. Finlayson, The Method of Weighted Residuals and Variational Principles. Academic Press, New York, 1972.
- [9] P. Goswami and R. Alqahtani, Solutions of fractional differential equations by sumudu transform and variational iteration method. Journal of Nonlinear Science and Application, 9(4) (2016), 19441951.
- [10] S. Gupta,Numerical simulation of time-fractional black-scholes equation using fractional variational iteration method, Journal of Computer and Mathematical Sciences,9(9) (2019), 11011110.
- [11] J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Computer Methods in Applied Mechanics and Engineering, 167(1-2) (1998), 57-68.
- [12] J. H. He, Variational iteration methoda kind of non-linear analytical technique: Some examples, International Journal of Non-Linear Mechanics, 34(4) (1999), 699-708.
- [13] J. H. He, Variational iteration method-Some recent results and new interpretations, Journal of Computational and Applied Mathematics, 207(1) (2007), 3 17.
- [14] S. Hesama, A. R. Nazemia, and A. Haghbinb, Analytical solution for the FokkerPlanck equation by differential transform method, Scientia Iranica B, 19 (2012), 11401145.
- [15] H. Jafari and A. Alipoor, A new method for calculating general Lagrange multiplier in the variational iteration method, Numerical Methods for Partial Differential Equations, 27 (2011), 996 1001.
- [16] H. Jafari and V. Daftardar-Gejji, Solving linear and nonlinear fractional diffusion and wave equations by adomian decomposition, Journal of Applied Mathematics and Computing, 180 (2006), 488497.
- [17] H. Jafari and S. Momani, Solving fractional diffusion and wave equations by modified homotopy perturbation method, Physics Letters A, 370(56) (2007), 388-396.
- [18] H. Jafari and S. Seifi, Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equa- tion, Commu. Nonli. Sci. Numer. Simul., 14(5) (2009), 20062012.
- [19]I. Jaradat, M. Alquran, and R. Abdel-Muhsen, An Analytical framework of 2D diffusion, wave-like, telegraph, and Burgers models with twofold Caputo derivatives ordering, Nonlinear Dyn., 93 (2018), 1911-1922.
- [20] H. Khan, A. Khan, W. Chen, and K. Shah, Stability analysis and a numerical scheme for fractional Klein-Gordon equations, Methods in the Applied Sciences, 42(2) (2019), 723 732.
- [21] K. Kim and Y.S. Kong, Anomalous behaviours in fractional Fokker-Planck equation, The Journal of the Korean Physical Society, 40(6) (2002), 979-82.
- [22] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons, New York, 1978.
- [23] S. Kumar, Numerical computation of time-fractional Fokker - Planck equation arising in solid state physics and circuit theory, Zeitschrift fur Naturforschung, 68 (2013), 1-8.
- [24] S. Kumar, A. Kumar, D. Baleanu, Two analytical methods for time-fractional nonlinear coupled BoussinesqBurgers equations arise in propagation of shallow water waves, Nonlinear Dyn, 85 (2016), 699715.
- [25] S. J. Liao, Beyond perturbation: introduction to homotopy analysis method, Eur. P, khys. J. Plus., (2003).
- [26] F. Liua, V. Anh, I. Turnerb, Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math. 166 (2004), 209219.
- [27] M. Magdziarz, A. Weron, and K. Weron, Fractional Fokker-Planck dynamics: stochastic representation and computer simulation, Physical Review E, 75 (2007), 1-6.
- [28] H. Mesgarani, M. Bakhshandeh, and Y. Esmaeelzade, The Stability and Convergence of The Numerical Compu- tation for the Temporal Fractional Black-Scholes Equation, J. Math. Ext., 15 (2021), 1-18.
- [29] H. Mesgarani, A. Y. Esmaeelzade, and H. Tavakoli, Numerical Simulation to Solve Two-Dimensional Temporal- Space Fractional BlochTorrey Equation Taken of the Spin Magnetic Moment Diffusion, Int. J. Appl. Comput. Math., 7(3) (2021), 1-14.
- [30] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, (1993).
- [31] S. Momani and Z. M. Odibat, The variational iteration method: an efficient scheme for handling fractional partial differential equation in fluid mechanics, Computers & Mathematics with Applications, 58 (2009), 21992208.
- [32] Nadeem, Muhammad, F. Li, and H. Ahmad, Modified laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients, Comput. Math. Appli., 78(6) (2019), 2052-2062.
- [33] Z. M. Odibat, A study on the convergence of variational iteration method, Math. Comput. Model., 51(9-10) (2010), 11811192.
- [34] Z. M. Odibat and S. Momani, Numerical solution of Fokker-Planck equation with space- and time-fractional derivatives, Phy. Letters A, 369 (2007), 349-358.
- [35] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers, Springer Dordrecht Heidelberg London New York, (2011).
- [36] I. Podlubny, Fractional Differential Equations, Academic Press, New York, (1999).
- [37] A. Prakash and H. Kaur, Numerical solution for fractional model of Fokker-Planck equation by using q-HATM, Chaos, Solitons and Fractals, 105 (2017), 99110.
- [38] Y. Qing and B. E. Rhoades, Stability of Picard iteration in metric spaces, Fixed Point Theory and Applications, 2008 (2008), 1-4.
- [39] S. S. Ray, Fractional Calculus with Applications for Nuclear Reactor Dynamics, CRC Press Taylor and Francis Group, New York, (2016).
- [40] H. Safdari, H. Mesgarani, M. Javidi, and A. Y. Esmaeelzade, Convergence analysis of the space fractional-order diffusion equation based on the compact finite difference scheme, Computational and Applied Mathematics, 39(2) (2020), 1-15.
- [41] A. Saravanan and N. Magesh, An efficient computational technique for solving the Fokker-Planck equation with space and time fractional derivatives, Journal of King Saud University - Science 28 (2016), 160-166.
- [42] A. Sayfy and S. A. Khuri, A laplace variational iteration strategy for the solution of differential equations, Appl. Math. Letters, 25 (2012), 22982305.
- [43] B. K. Singh, A novel approach for numeric study of 2D biological population model, Cogent Math, 3 (2016), 1261527.
- [44] B. K. Singh, Fractional reduced differential transform method for numerical computation of a system of linear and nonlinear fractional partial differential equations, Int. J. Open Problems Compt. Math., 9(3) (2016), 2038.
- [45] B. K. Singh, Homotopy perturbation new integral transform method for numeric study of space and time fractional (n+1)-dimensional heat and wave-like equations, Waves, Wavelets Frac., 4 (2018), 1936.
- [46] B. K. Singh and S. Agrawal, A new approximation of conformable time fractional partial differential equations with proportional delay, Appl. Numer. Math., 157 (2020), 419433.
- [47] B. K. Singh and S. Agrawal, Study of time fractional proportional delayed multi-pantograph system and integro- differential equations, Math. Meth. Appl. Sci., 45 (2022), 8305-8328.
- [48] B. K. Singh and P. Kumar, A novel approach for numerical computation of Burgers equation in (1 +1) and (2 + 1) dimensions, Alex. Eng. J., 55(4) (2016), 33313344.
- [49] B. K. Singh and P. Kumar, Numerical computation for time - fractional gas dynamics equations by fractional reduced differential transforms method. J. Math. Sys. Sci., 6 (2016), 248259.
- [50] B. K. Singh and P. Kumar, Extended Fractional Reduced Differential Transform for Solving Fractional Partial Differential Equations with Proportional Delay, Int. J. Appl. Comput. Math., 3(1) (2017), 631649.
- [51] B. K. Singh and P. Kumar, Fractional variational iteration method for solving fractional partial differential equa- tions with proportional delay, Int. J. Differ. Eqns., 88(8) (2017), 111.
- [52] B. K. Singh and P. Kumar, FRDTM for numerical simulation of multi-dimensional, time-fractional model of NavierStokes equation, Ain Shams Eng. J., 9(4) (2018), 827-834.
- [53] B. K. Singh and P. Kumar, An algorithm based on a new DQM with modified extended cubic B-splines for numerical study of two dimensional hyperbolic telegraph equation, Alex. Eng. J., 57(1) (2018), 175191.
- [54] B. K. Singh and P. Kumar, Homotopy perturbation transform method for solving fractional partial differential equations with proportional delay, SeMA J., em 75 (2018), 111125.
- [55] B. K. Singh and A. Kumar, Numerical Study of Conformable Space and Time Fractional FokkerPlanck Equation via CFDT Method,In:N. Deo , V. Gupta V., A. Acu , P. Agrawal, (eds) Mathematical Analysis II: Optimisation, Differential Equations and Graph Theory, ICRAPAM 2018 Springer Proceedings in Mathematics and Statistics, Springer, 307 (2020).
- [56] B. K. Singh and P. Kumar, and V. Kumar, Homotopy perturbation method for solving time fractional coupled viscous Burgers equation in (2+1) and (3+1) dimensions, Int. J. Appl. Comput. Math., 4(38) (2018).
- [57] B. K. Singh, A. Kumar, and M. Gupta, Efficient New Approximations for Space-Time Fractional Multi- dimensional Telegraph Equation, Int. J. Appl. Comput. Math., 8 (2022), 218.
- [58] B. K. Singh and M. Gupta, A comparative study of analytical solutions of space-time fractional hyperbolic-like equations with two reliable methods, Arab J. Basic Appl. Sci., 26(1) (2019), 4157.
- [59] B. K. Singh and M. Gupta, A new efficient fourth order collocation scheme for solving Burgers’ equation, Appl. Math. Comput., 399(15)(2021), 126011.
- [60] B. K. Singh and M. Gupta, Trigonometric tension B-spline collocation approximations for time fractional Burgers equation, J. Ocean Eng. Sci., https://doi.org/10.1016/j.joes.2022.03.023.
- [61] B. K. Singh, J. P. Shukla, and M. Gupta, Study of one dimensional hyperbolic telegraph equation via a hybrid cubic B-spline differential quadrature method, Int. J. Appl. Comput. Math., 7(1), 14 (2021)
- [62] B. K. Singh and V. K. Srivastava, Approximate series solution of multi-dimensional, time fractional-order (heat- like) diffusion equations using frdtm, Royal Society Open Science, 2(5) (2015), 140511.
- [63] L. Song, S. Xu, and J. Yang, Dynamical models of happiness with fractional order. Commu. Nonli. Sci. Numer. Simul., 15(3) (2010), 616628.
- [64] I. M. Sokolov, Thermodynamics and fractional Fokker-Planck equations, Physical Review E, 63(5) (2001), 561111- 18.
- [65] A. A. Stanislavsky, Subordinated Brownian motion and its fractional Fokker Planck equation, Physica Scripta, 67(4) (2003), 265-268.
- [66] V. E. Tarasov, Fokker-Planck equation for fractional systems, International Journal of Modern Physics, 21(6) (2007), 955967.
- [67] M. Tataria, M. Dehghana, and M. Razzaghib, Application of the Adomian decomposition method for the Fokker- Planck equation, Mathematical and Computer Modelling, 45 (2007), 639650.
- [68] L. Yan, Numerical solutions of fractional Fokker Planck equations using iterative Laplace transform method, Abstract and applied analysis, 2013 (2013) 465160, 7 pages.
- [69] Q. Yang, F. Liu, and I. Turner, Computationally efficient numerical methods for time and space-fractional Fokker- Planck equations, Physica Scripta, 36(2009) Article ID 014026, 7 pages.
- [70] J. J. Yao, A. Kumar, and S. Kumar, A fractional model to describe the Brownian motion of particles and its analytical solution, Advances in Mechanical Engineering, 7(12) (2015), 111.
- [71] A. Yildirim, Analytical approach to Fokker-Planck equation with space- and time fractional derivatives by means of the homotopy perturbation method, Journal of King Saud University-Science, 22(4) (2010), 257264.
- [72] S. E. Wakil and M. A. Zahran, Fractional Fokker-Planck equation. Chaos, Solitons Fractals, 11(5) (2000), 791-8.
- [73] W. Zhao and S. Maitama,Beyond sumudu transform and natural transform: j-transform properties and applica- tions, Journal of Applied Analysis and Computation, 10(4) (2020), 12231241.
|