- [1] T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc.,2013 (2013), 1-12.
- [2] T. Abdeljawad and J. Alzabut, On Riemann–Liouville fractional q-difference equations and their application to retarded logistic type model, Math. Methods Appl. Sci., 41(18) (2018), 8953–8962.
- [3] T. Abdeljawad and F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012 (2012), 1-13 .
- [4] N. Acar and F. M. Atıcı, Exponential functions of discrete fractional calculus, Appl. Anal. Discrete Math., 7(2) (2013), 343–353.
- [5] K. Ahrendt, L. Castle, M. Holm, and K. Yochman, Laplace transforms for the nabla-difference operator and a fractional variation of parameters formula, Commun. Appl. Anal., 16(3) (2012), 317–347.
- [6] A. Alkhazzan, P. Jiang, D. Baleanu, H. Khan, and A. Khan, Stability and existence results for a class of nonlinear fractional differential equations with singularity, Math. Methods Appl. Sci., 41(18) (2018), 9321–9334.
- [7] J. Alzabut, S. Tyagi, and S. Abbas, Discrete fractional-order BAM neural networks with leakage delay: existence and stability results, Asian J. Control, 22(1) (2020), 143–155.
- [8] J. Alzabut and T. Abdeljawad, A generalized discrete fractional Gronwall inequality and its application on the uniqueness of solutions for nonlinear delay fractional difference system, Appl. Anal. Discrete Math., 12(1) (2018), 36–48.
- [9] G. A. Anastassiou, Nabla discrete fractional calculus and nabla inequalities, Math. Comput. Modelling, 51(5-6) (2010), 562–571.
- [10] F. M. Atıcı and P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ., Special Edition I, 1(3) (2009), 1-12.
- [11] F. M. Atıcı and P. W. Eloe, Linear systems of fractional nabla difference equations, Rocky Mountain J. Math., 41(2) (2011), 353–370.
- [12] M. Bohner and A. Peterson, Dynamic equations on time scales. An introduction with applications, Birkh¨auser, Boston, MA, 2001.
- [13] J. Cˇerm´ak, T. Kisela, and L. Nechv´atal, Stability and asymptotic properties of a linear fractional difference equation, Adv. Difference Equ., 122 (2012), 1-14.
- [14] S. Elaydi, An introduction to difference equations, Third edition, Springer, New York, 2005.
- [15] P. Eloe and J. Jonnalagadda, Mittag–Leffler stability of systems of fractional nabla difference equations, Bull. Korean Math. Soc., 56(4) (2019), 977–992.
- [16] S. R. Grace, H. Adıguzel, J. Alzabut, and J. M. Jonnalagadda, Asymptotic behavior of positive solutions for three types of fractional difference equations with forcing term, Vietnam J. Math., 49(4) (2021), 1151–1164.
- [17] S. R. Grace, J. Alzabut, S. Punitha, V. Muthulakshmi, and H. Adıguzel, On the nonoscillatory behavior of solutions of three classes of fractional difference equations, Opuscula Math., 40(5) (2020), 549–568.
- [18] C. Goodrich and A. C. Peterson, Discrete fractional calculus, Springer, Cham, 2015.
- [19] H. L. Gray and N. F. Zhang, On a new definition of the fractional difference, Math. Comp., 50(182) (1988), 513–529.
- [20] B. Jia, L. Erbe, and A. Peterson, Comparison theorems and asymptotic behavior of solutions of discrete fractional equations, Electron. J. Qual. Theory Differ. Equ., 89 (2015), 1-18.
- [21] A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al-Mdallal, and H. Khan, Stability analysis of fractional nabla difference COVID-19 model, Results in Physics, 22 (2021), 1-8.
- [22] A. Khan, H. M. Alshehri, J. F. Gomez-Aguilar, Z. A. Khan, and G. A. Fernandez-Anaya, Predator-prey model involving variable-order fractional differential equations with Mittag–Leffler kernel, Adv. Difference Equ., 189 (2021), 1-18.
- [23] A. Khan, Z. A. Khan, T. Abdeljawad, and H. Khan, Analytical analysis of fractional-order sequential hybrid system with numerical application, Adv. Contin. Discrete Models, 12 (2022), 1-19.
- [24] Z. A. Khan, A. Khan, T. Abdeljawad, and H. Khan, Computational analysis of fractional order imperfect testing infection disease model, Fractals, 30(5) (2022), 1-17.
- [25] H. Khan, C. Tunc, and A. Khan, Green function’s properties and existence theorems for nonlinear singular-delay- fractional differential equations, Discrete Contin. Dyn. Syst. Ser. S, 13(9) (2020), 2475–2487.
- [26] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science B. V., Amsterdam, 2006.
- [27] K. S. Miller and B. Ross, Fractional difference calculus. Univalent functions, fractional calculus, and their appli- cations, K¯oriyama, 1988, 139–152, Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1989.
- [28] A. Nagai, An integrable mapping with fractional difference, J. Phys. Soc. Japan, 72(9) (2003), 2181–2183.
- [29] I. Podlubny, Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, CA, 1999.
- [30] I. Podlubny, Matrix approach to discrete fractional calculus, Fract. Calc. Appl. Anal., 3(4) (2000), 359–386.
- [31] A. G. M. Selvam, D. Baleanu, J. Alzabut, D. Vignesh, and S. Abbas, On Hyers–Ulam Mittag–Leffler stability of discrete fractional Duffing equation with application on inverted pendulum, Adv. Difference Equ., 456 (2020), 1-16.
- [32] A. G. M. Selvam, J. Alzabut, R. Dhineshbabu, S. Rashid and M. Rehman, Discrete fractional order two-point boundary value problem with some relevant physical applications, J. Inequal. Appl., (2020), 1-19.
- [33] K. Shah, Z. A. Khan, A. Ali, R. Amin, H. Khan, and A. Khan, Haar wavelet collocation approach for the solution of fractional order COVID-19 model using Caputo derivative, Alexandria Engineering Journal, 59 (2020), 3221– 3231.
- [34] I. Ullah, S. Ahmad, Q. Al-Mdallal, Z. A. Khan, H. Khan, and A. Khan, Stability analysis of a dynamical model of tuberculosis with incomplete treatment, Adv. Difference Equ., (2020), 1-14.
- [35] G. Wu, D. Baleanu, W. Luo, and H. Wei, Lyapunov functions for Riemann–Liouville-like fractional difference equations, Appl. Math. Comput., 314 (2017), 228–236.
|