- [1] M. A. Akbar and M. A. Norhashidah, The improved F-expansion method with Riccati equation and its applications in mathematical physics, Cogent Math., 4 (2017), 1-19.
- [2] S. Ak¸ca˘gıl and T. Aydemir, A new application of the unified method, New Trend Math. Sci., 6(1) (2018), 185-199.
- [3] A. Ali, M. A. Iqbal, and S. T. Mohyud-Din, Traveling wave solutions of generalized Za- kharov–Kuznetsov–Benjamin–Bona–Mahony and simplified modified form of Camassa–Hol equation exp(–ψ(η))– Expansion method, Egypt. J. Basic Appl. Sci., 3 (2016), 134–140.
- [4] S. M. Y. Arafat, S. M. R. Islam, and M. H. Bashar, Influence of the free parameters and obtained wave solutions from CBS equation, Int. J. Appl. Math., 8 (2022), 1-17.
- [5] M. H. Bashar and S. M. R. Islam, Exact solutions to the (2+1)-Dimensional Heisenberg ferromagnetic spin chain equation by using modified simple equation and improve F-expansion methods, Phys. Open 5 (2020), 1-9.
- [6] M. H. Bashar, S. M. R. Islam, and D. Kumar, Construction of traveling wave solutions of the (2+1)-Dimensional Heisenberg ferromagnetic spin chain equation, Partial. Differ. Equ. App. Math., 4 (2021), 1-9.
- [7] M. H. Bashar, S. M. Y. Arafat, S. M. R. Islam, and M. M. Rahman, Wave solutions of the couple Drin- fel’d–Sokolov–Wilson equation: new wave solutions and free parameters effect, J. Ocean Eng. Sci., In Press (2022). https://doi.org/10.1016/j.joes.2022.05.003
- [8] M. Bilal, J. Ren, and U. Younas, Stability analysis and optical soliton solutions to the nonlinear Schr¨odinger model with efficient computational techniques, Opt. Quantum Electron, 53 (2021), 1-19.
- [9] M. Bilal, U. Younas, and J. Ren, Propagation of diverse solitary wave structures to the dynamical soliton model in mathematical physics, Opt. Quantum Electron, 53 (2021), 1-20.
- [10] M. Bilal, U. Younas, and J. Ren Dynamics of exact soliton solutions in the double chain model of deoxyribonucleic acid, Math. Methods Appl. Sci., 44 (2021), 13357-13375.
- [11] M. Bilal, U. Younas, and J. Ren, Dynamics of exact soliton solutions to the coupled nonlinear system using reliable analytical mathematical approaches, Commun. Theor. Phys., 73 (2021), 085005.
- [12] J. P. Boyd, Peakons and cashoidal waves: traveling wave solutions of the Camassa–Holm equation, Appl. Math. Comput., 81(2–3) (1997), 173–187.
- [13] R. Camassa and D. Holm, An integrable shallow water equation with peaked soliton, Phys. Rev. Lett., 71 (1993), 1661–1664.
- [14] S. J. Chen, X. Lu, and W. X. Ma, Backlund transformation, exact solutions and interaction behaviour of the (3+1)- dimensional Hirota–Satsuma-Ito-like equation, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 1-12.
- [15] F. Cooper and H. Shepard, Solitons in the Camassa–Holm shallow water equation, Phys. Lett. A, 194 (1994) 246–250.
- [16] M. Fisher and J. Shiff, The Camassa–Holm equation: conserved quantities and the initial value problem, Phys. Lett. A, 259(3) (1999), 371–376.
- [17] Y. Gao, L. Li, and J. G. Liu, Patched peakon weak solutions of the modified Camassa–Holm equation, Phys. D: Nonlinear Phenom., 390 (2019), 15-35. https://doi.org/10.1016/j.physd.2018.10.005
- [18] O. M. G¨ozu¨kızıl, S. Ak¸ca˘gıl, and T. Aydemir, Unification of all hyperbolic tangent function methods, Open Phys., 14 (2016), 524–541.
- [19] S. M. R. Islam, The traveling wave solutions of the cubic nonlinear Schr¨odinger equation using the enhanced (G//G)-expansion method, World Appl. Sci. J., 33(4) (2015), 659-667.
- [20] S. M. R. Islam, Application of an enhanced (G//G)-expansion method to find exact solutions of nonlinear PDEs in particle physics, Am. J. Appl. Sci., 12(11) (2015), 836-846.
- [21] S. M. R. Islam, A. Akbulut, and S. M. Y. Arafat, Exact solutions of the different dimensional CBS equations in mathematical physics, Partial Differ. Equ. App. Math., 5 (2022), 1-7.
- [22] S. Islam, K. Khan, and M. A. Akbar, Application of the improved F -expansion method with Riccati equation to find the exact solution of the nonlinear evolution equations, J. Egypt. Math. Soc., 25 (2017), 13–18.
- [23] M. N. Islam, M. Asaduzzaman, and M. S. Ali, Exact wave solutions to the simplified modified Camassa-Holm equation in mathematical physics, AIMS Math., 5(1) (2019), 26-41.
- [24] S. M. R. Islam, S. M. Y. Arafat, and H. F. Wang, Abundant closed-form wave solutions to the simplified modified Camassa-Holm equation, J. Ocean Eng. Sci., In Press (2022). https://doi.org/10.1016/j.joes.2022.01.012
- [25] S. M. R. Islam, K. Khan, and K. M. A. Al-Woadud, Analytical studies on the Benney-Luke equation in mathe- matical physics, Wave Random Complex, 28 (2018), 300-309.
- [26] S. M. R. Islam, K. Khan, and M. A. Akbar, Exact solution of unsteady Korteweg-de Vries and time regularized long wave equations, Springerplus, 4 (2015), 1-11.
- [27] M. Kaplan and A. Akbulut, The analysis of the soliton-type solutions of conformable equations by using generalized Kudryashov method, Opt. Quantum Electron, 53 (2021), 1-21.
- [28] D. Kumar, C. Park, N. Tamanna, G. C. Paul, and M. S. Osman, Dynamics of two-mode Sawada-Kotera equation: Mathematical and graphical analysis of its dual-wave solutions, Results Phys., 19 (2020), 1-11.
- [29] Y. Li, L. Tian, and Y. Wu, On the Bifurcation of traveling wave solution of generalized Camassa-Holm equation, Int. J. Nonlinear Sci., 6(1) (2008), 34-45.
- [30] X. Liu, L. Tian, and Y. Wu, Application of (G//G)-expansion method to two nonlinear evolution equations, App. Math. Comput., 217 (2010), 1376-1384.
- [31] X. Lu, L. Lu, and A. Chen, New peakons and periodic peakons of the modified Camassa-Holm equation, J. Nonlinear Model. Analy., 2(3) (2020), 345-353.
- [32] M. H. Raddadi, M. Younis, A. R. Seadawy, S. U. Rehman, M. Bilal, S. T. R. Rizvi, and A. Althobaiti, Dynamical behaviour of shallow water waves and solitary wave solutions of the Dullin-Gottwald-Holm dynamical system, J. King Saud Univ. Sci., 33 (2021), 1-9. https://doi.org/10.1016/j.jksus.2021.101627
- [33] S. U. Rehman, A. R. Seadawy, S. T. R. Rizvi, S. Ahmed, and S. Althobaiti, Investigation of double dispersive waves in nonlinear elastic inhomogeneous Murnaghan’s rod, Mod. Phys. Lett. B, 36 (2022), 1-12.
- [34] S. U. Rehman and J. Ahmad, Dispersive multiple lump solutions and soliton’s interaction to the nonlinear dy- namical model and its stability analysis, Eur. J. Plus 76 (2022), 1-13.
- [35] S. U. Rehman, M. Bilal, and J. Ahmad, Dynamics of soliton solutions in saturated ferromagnetic materials by a novel mathematical method, J. Magn. Magn. Mater., 538 (2021), 1-12.
- [36] A. R. Seadawy, A. Ali, S. Althobaiti, and A. Sayed, Propagation of wave solutions of nonlinear Heisenberg ferromagnetic spin chain and Vakhnenko dynamical equations arising in nonlinear water wave models, Chaos Solitons Fractals, 146(2021), 1-11.
- [37] A. R. Seadawy, S. U. Rehman, M. Younis, S. T. R. Rizvi, and S. Althobaiti, On solitons: Propagation of shallow water waves for the fifth-order KdV hierarchy integrable equation, Open Phys., 19 (2021), 828-842.
- [38] A. R. Seadawy, S. U. Rehman, M. Younis, S. T. R. Rizvi, S. Althobaiti, and M. M. Makhlouf, Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with Pochhammer- Chree equation, Phys. Scr., 96 (2021), 1-14.
- [39] Y. Shen, B. Tian, C. R. Zhang, H. Y. Tian, and S. H. Liu, Breather-wave, periodic-wave and traveling wave solutions for a (2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation for an incompressible fluid, Mod. Phys. Lett. B, 35 (2021), 1-10.
- [40] S. F. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation, App. Math. Lett., 100 (2020), 1-8.
- [41] L. Tian and X. Song, New peaked solitary wave solutions of the generalized Camassa–Holm equation, Chaos Solitons Fractals, 19 (2004), 621–637.
- [42] L. Tian, G. Xu, and Z. Liu, The concave or convex peaked and smooth solutions of Camassa–Holm equation, Appl. Math. Mech., 23(5) (2002), 557–567.
- [43] G. Wang, A new (3 + 1)-dimensional Schr¨odinger equation: derivation, soliton solutions and conservation laws, Nonlinear Dyn., 104 (2021) 1595–1602.
- [44] G. Wang, Q. P. Liu, and H. Mao, The modified Camassa- Holm equation: B¨acklund transformation and nonlinear superposition formula, J. Phys. A Math. Theor., 53 (2020), 1-15.
- [45] A. M. Wazwaz, New compact and noncompact solutions for two variants of a modified Camassa-Holm equation, Appl. Math. Comput., 163(3) (2005), 1165-1179.
- [46] A. Yoku¸s, H. Durur, and K. A. Abro, Symbolic computation of Caudrey–Dodd–Gibbon equation subject to periodic trigonometric and hyperbolic symmetries, Eur. Phys. J. Plus, 136 (2021), 1-16.
- [47] U. Younas and J. Ren, Investigation of exact soliton solutions in magneto-optic waveguides and its stability analysis, Results Phys.,21 (2021), 1-20.
- [48] U. Younas, H. Rezazadeh, J. Ren, and M. Bilal, Propagation of diverse exact solitary wave solutions in separation phase of iron (Fe-Cr- X (X=Mo, Cu)) for the ternary alloys, Int. J. Mod. Phys. B 36 (2022), 1-18.
- [49] U. Younas, J. Ren, and M. Bilal, Dynamics of optical pulses in fiber optics, Mod. Phys. Lett. B, 36 (2022), 1-27.
- [50] U. Younas, M. Bilal, and J. Ren, Propagation of the pure-cubic optical solitons and stability analysis in the absence of chromatic dispersion, Opt. Quantum Electron., 53 (2021), 1-25.
- [51] U. Younas, M. Bilal, and J. Ren, Diversity of exact solutions and solitary waves with the influence of damping effect in ferrites materials, J. Magn. Magn. Mater., 549 (2022), 1-12.
- [52] W. Yu, W. Liu, H. Triki, Q. Zhou, and A. Biswas, Phase shift, oscillation and collision of the anti-dark solitons for the (3+1)-dimensional coupled nonlinear Schr¨odinger equation in an optical fiber communication system, Nonlinear Dyn., 97 (2019), 1253–1262.
- [53] D. Zhao and Zhaqilao, Three-wave interactions in a more general (2+1)-dimensional Boussinesq equation, Eur. Phys. J. Plus, 135 (2020), 1-16.
|