- [1] A. Ba¸shan, N. M. Ya˘gmurlu, Y. U¸car, and A. Esen, A new perspective for the numerical solution of the Modified Equal Width wave equation, Math. Meth. Appl. Sci.,44 (2021), 8925–8939. https://doi.org/10.1002/mma.7322.
- [2] A. Ba¸shan, Single Solitary Wave and Wave Generation Solutions of the Regularised Long Wave (RLW) Equation, GU. J. Sci; 35(4) (2022), 1597-1612.DOI: 10.35378/gujs.892116.
- [3] A. Ba¸shan and N. M. Ya˘gmurlu, A mixed method approach to the solitary wave, undular bore and boundary-forced solutions of the Regularized Long Wave equation, Computational and Applied Mathematics, 41(169) (2022). https://doi.org/10.1007/s40314-022-01882-7.
- [4] A. Ba¸shan, A novel outlook to the an alternative equation for modelling shallow water wave: Regularised Long Wave (RLW) equation, Indian J Pure Appl Math.,(2022), https://doi.org/10.1007/s13226-022-00239-4.
- [5] A. Ba¸shan, N. M. Ya˘gmurlu, Y. U¸car, and A. Esen, Finite difference method combined with differential quadrature method for numerical computation of the modified equal width wave equation, Numer. Methods Partial Differ. Equations., 37 (2009), 690-706. https://doi.org/10.1002/num.22547.
- [6] R. J. Cheng and K. M. Liew, Analyzing modified equal width (MEW) wave equation using the improved element- free Galerkin method, Eng. Anal. Boundary Elem.,36 (2012), 1322–1330.
- [7] I. C¸ elikkaya, Operator splitting method for numerical solution of modified equal width equation, Tbilisi Math. J., 12 (2019), 51–67. https://doi.org/10.1016/j.enganabound.2012.03.013
- [8] Y.Dereli, Radial basis functions method for numerical solution of the modified equal width equation, Int J Comp Math., 87(7) (2010), 1569-1577. https://doi.org/10.1080/00207160802395908
- [9] M. Dehghan and M. Lakestani, The use of cubic B-spline scaling functions for solving the one-dimensional hyperbolic equation with a nonlocal conservation condition, Numerical methods for Partial Differential Equations, 23(6) (2007), 1277-1289. DOI 10.1002/num.20209.
- [10] D. J. Evans and K. R. Raslan, Solitary waves for the generalized equal width (GEW) equation, Int. J. Comput., Math. 82(4) (2005), 445–455. https://doi.org/10.1080/0020716042000272539
- [11] A. Esen, A lumped Galerkin method for the numerical solution of the modified equal-width wave equation using quadratic B-splines, Int. J. Comput. Math., 83(5-6) (2006), 449–459. https://doi.org/10.1080/00207160600909918
- [12] A. Esen and S. Kutluay, Solitary wave solutions of the modified equal width wave equation, Commun. Non linear Sci. Numer. Simul., 13(3) (2008), 1538–1546. https://doi.org/10.1016/j.cnsns.2006.09.018
- [13] Y. M. A. Essa, Multigrid method for the numerical solution of the modified equal width wave equation, Appl. Math., 7(2016), 1140–1147.DOI: 10.4236/am.2016.710102.
- [14] L. R. T. Gardner and G. A. Gardner, Solitary waves of the EWE equation, J. Comput. Phys., 101 (1992), 218–223.
- [15] T. Geyikli and S. B. G. Karako¸c, Subdomain Finite Element Method with Quartic B Splines for the Modified Equal Width Wave Equation, Zh. Vychisl. Mat. Mat. Fiz., 55(3) (2015), 410-421.
- [16] T. Geyikli and S. B. G. Karako¸c, Petrol–Galerkin method with cubic B-splines for solving the MEW equation, Bull. Belg. Math. Soc., Simon Stevin 19(2012), 215–227
- [17] S. Hamdi, W. H. Enright, W. E. Schiesserand, and J. J. Gottlieb, Exact solutions of the generalized equal width wave equation, In Proceedings of the International Conference on Computational Science and its Applications., (Springer-Verlag) (2003), 725-734.
- [18] H. Holden et al., Splitting methods for partial differential equations with rough solutions, European Mathematical Society, Publishing House, Zu¨rich, 2010.
- [19] L. Jin, Analytical Approach to the Modified Equal Width Equation, Int. J. Contemp. Math. Sciences., 4(23) (2009), 1113 -1119.
- [20] S. B. G. Karako¸c and T. Geyikli, Numerical solution of the modified equal width wave equation, Int. J. Diff.Equations., (2012), 1–15. DOI: 10.1155/2012/587208
- [21] S. B. G. Karako¸c and T. Geyikli, A numerical solution of the MEW equation using sextic B-splines, J. Adv. Res. Appl. Math., 5 (2013), 51–65. DOI: 10.5373/jaram.1542.091012
- [22] S. B. G. Karako¸c, Y. U¸car, and N. M. Ya˘gmurlu, Different linearization techniques for the numerical solution of the MEW equation, Sel¸cuk J. Appl., Math., 13(2) (2012), 43-62.
- [23] J. Lu, He’s variational iteration method for the modified equal width equation, Chaos, Solitons and Fractals., 39(5) (2007), 2102–2109. DOI: 10.1016/j.chaos.2007.06.104.
- [24] M. Lakestani and M. Dehghan, Numerical solution of Fokker-Planck equation using the cubic B-spline scaling functions, Numerical methods for Partial Differential Equations, 25(2) (2009), 418-429. DOI:10.1002/num.20352.
- [25] P. J. Morrison, J. D. Meiss, and J. R. Carey, Scattering of Regularized-Long-Wave Solitary Waves, Physica D: Nonlinear Phenomena., 11 (1984),324–336.https://doi.org/10.1016/0167-2789(84)90014-9
- [26] P. J. Olver, Euler operators and conservation laws of the BBM equation, Math Proc. Camb. Phil. Soc., 85 (1979), 143-160.
- [27] P. M. Prenter, Splines and variational methods, John Wiley, New York, NY, 1975.
- [28] G. D. Smith, Numerical solutions of partial differential equations: Finite difference methods, Clarendon Press,Oxford, 1985.
- [29] K. R. Raslan, M. A. Ramadan, and I. G. Amıen, Finite difference approximations for the modified equal width wave (MEW) equation. J. Math Comput Sci., 4(5) (2014), 940-957.
- [30] T. Roshan, A Petrov-Galerkin method for solving the generalized equal width (GEW) equation, . Comput. Appl. Math., 235(6) (2011), 1641–1652.https://doi.org/10.1016/j.cam.2010.09.006
- [31] N. Taghizadeh, M. Mirzazadeh, A. S. Paghaleh, and J. Vahidi, Exact solutions of nonlinear evolu- tion equations by using the modified simple equation method, Ain Shams Eng J., 3 (2012), 321-325. https://dx.doi.org/10.1016/j.asej.2012.03.010
- [32] A. M. Wazwaz, The tanh and the sine-cosine methods for a reliable treatment of the modi- fied equal width equation and its variants, Commun. Nonlinear Sci. Numer. Simul., 11(2) (2006), 148–160.https://doi.org/10.1016/j.cnsns.2004.07.001
- [33] H. Wang, L. Chen, and H.Wang, Exact travelling wave solutions of the modified equal width equation via the dynamical system method, Nonlin. Anal. Diff. Eq., 4(1) (2016), 9-15. https://dx.doi.org/10.12988/nade.2016.5824
- [34] N. M. Ya˘gmurlu and A. S. Karaka¸s, A novel perspective for simulations of the MEW equation by trigonometric cu- bic B-spline collocation method based on Rubin-Graves type linearization, Computational Methods for Differential Equations.,(2021), 1-14. http://cmde.tabrizu.ac.ir.DOI:10.22034/cmde.2021.47358.1981.
- [35] S. I. Zaki, A least-squares Finite element scheme for the EW equation, Comput. Methods Appl. Mech. Engrg., 189 (2000), 587-594.https://doi.org/10.1016/S0045-7825(99)00312-6.
- [36] H. Zadvan and J. Rashidinia, Development of non polynomial spline and New B-spline with application to solution of Klein-Gordon equation, Computational Methods for Differential Equations, 8(4) (2020), 794-814. DOI:10.22034/cmde.2020.27847.1377.
|