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Abstract

In this paper, numerical computation of the modified equal width equation (MEW), which is one of the equations

used to model nonlinear events, will be carried out. For this equation, numerical computations have been obtained

by many researchers using different methods. The goal of the new approach is to check how well it performs with
respect to the numerical calculations the researchers found. For this, the proposed study presents a Lie-Trotter

splitting algorithm in accordance with the time-splitting technical rules combined with Lumped Galerkin FEM

based on the basis function of the cubic B-spline. Two valid test examples are given to determine the validity and
effectiveness of the current technique. The results obtained in a new way with the Matlab computational software

are compared with the studies of other authors in the literature and are shown graphically. Based on these new

results, it can clearly be stated that the benefit of the proposed approach is to demonstrate that reliability is
achieved in obtaining approximate computations.
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1. Introduction

The main theme of this article is to obtain the approximate solutions of the modified equal width (MEW) equation

Ut + εU2Ux − µUxxt = 0, (1.1)

with the initial and boundary conditions presented in form

U(x, 0) = f(x), xL ≤ x ≤ xR, (1.2)

and

U(xL, t) = U(xR, t) = 0,

Ux(xL, t) = Ux(xR, t) = 0,

Uxx(xL, t) = Uxx(xR, t) = 0,

(1.3)

which has the solitary wave solution given as follows

U(x, t) = csech[k(x− x0 − vt)], (1.4)

in which v =
c2

2
, k =

√
1

µ
and t is time and x is space dimensions. ε and µ are non-negative constants and also f(x) is

a smooth function and U is related to the vertical displacement of the water surface. The MEW equation can also be
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given under physical boundary conditions U → 0 when x→ ±∞, due to its close relationship with the RLW equation
given as follows

Ut + Ux − UUx − Uxxt = 0,

and the solitary wave-type solution of the equation has not only in the unlimited region, but also a solitary wave
solution in the closed range [xL, xR]. When the literature is examined, solitary ones, defined as traveling waves,
maintain their shape and velocity due to the sensitive balance between nonlinearity and dispersal effects, whereas a
soliton is a very private type of solitary waves, maintaining its shape and speed even after colliding with another wave
[14]. While the amplitudes of these solitary waves can be both positive and negative, their velocity is commensurate
to the square of their amplitudes and is also only positive. It has become very important recently to investigate the
traveling wave solutions of nonlinear wave equations in relation to sciences such as optics, fluid mechanics, solid state
physics, plasma physics, kinetics and geology, and make numerical calculations for natural systems in the field of
mathematical modeling. When the literature is examined, it is seen that the MEW equation is used quite a lot in
modeling nonlinear events and this equation is closely related to the EW equation proposed by Morrison et al. [25]
given as follows

Ut − Uxxt + UUx = 0.

In the literature, it can be seen that both analytical and numerical solutions have been obtained by many authors about
the MEW equation. Some studies can be given as [17, 19, 23, 31–33] for analytical solutions of the MEW equation.
Hamdi et al.[17] derived exact solitary wave solutions for GEW and GEW-Burgers equations. Wazwaz [32] examined
the equation and two of its variants with a sine-cosine and tanh methods. Jin [19] solved the equation via the homotopy
perturbation method. Lu [23] suggested a variational iteration method. Wang et al. [33] investigated by utilizing the
method of a dynamical system for traveling wave solutions. Taghizadeh et al. [31] used the modified simple equation
method. And some studies [1, 5–8, 10–16, 20–22, 29, 30, 34] can be given as numerically for solutions of the MEW
equation. Gardner and Gardner [14] solved with Galerkin’s method to the EW equation. Cheng and Liew [6] derived
an improved element-free Galerkin (IEFG) method for an equation. Esen [11] and Karakoç and Geyikli [20] applied a
Lumped Galerkin method with the quadratic B-spline. Çelikkaya [7] solved the equation with Strang splitting scheme
implementing the cubic B-spline. Esen and Kutluay [12] and Raslan et al. [29] used the finite difference method for
the equation. Essa [13] implemented the multigrid method. Geyikli and Karakoç [15] and Karakoç and Geyikli [21]
obtained Subdomain finite element method with the help of quartic and sextic B-splines, respectively. Geyikli and
Karakoç [16] and Roshan [30] utilized a Petrov Galerkin method for the equation MEW and GEW, respectively. At
the same time, Evans and Raslan [10] presented a collocation method with quadratic B-splines for the GEW equation.
Dereli[8] sought by utilizing the meshless method with radial basis functions collocation method. Karakoç et al. [22]
used different linearization techniques via cubic B-spline collocation FEM. Başhan et al. [5] have worked on the finite
difference method combined with the differential quadrature method. Additionally, in the last years, Başhan et al. [1]
have submitted a new perspective for an equation. Yağmurlu and Karakaş [34] proposed using trigonometric cubic
B-spline for the equation and also we can include [2–4] references in the article so that the reader is aware of the latest
published articles on the subject. They explored numerical solutions for Regularized Long Wave (RLW) equation.
The error norms L2 and L∞ and the conservation constants I1, I2, and I3 found by Olver [26] are computed in
calculating solutions of solitary waves throughout the present study and the new findings are compared with some
existing studies in the literature. The formulas of these calculated values are given as follows

L2 = ||U − UN ||2 =

√√√√h

N∑
j=0

(U − UN )2,

L∞ = ||U − UN ||∞ = max
j
|U − UN |,

and

I1 =

∫ xR

xL

U(x, t)dx,
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I2 =

∫ xR

xL

[U2(x, t) + µU2
x(x, t)]dx,

I3 =

∫ xR

xL

[U4(x, t)]dx.

2. Cubic B-Splines

For approximate solutions, let the space and time domains of the problem be limited to the intervals xL ≤ x ≤ xR
and 0 ≤ t ≤ T , respectively. The space region are divided into N finite elements uniformly as xL = x0 < x1 < ... <
xN = xR with h = xj+1 − xj , j = 0(1)N − 1. Likewise, the time domain are divided into M finite elements uniformly
as 0 = t0 < t1 < ... < tM = T with k = tn+1 − tn, n = 0(1)M − 1. The cubic B-spline shape functions ϕj(x) for
j = −1(1)N + 1 are given as [27]

ϕj(x) =
1

h3



(x− xj−2)3, x ∈ [xj−2, xj−1),

h3 + 3h2(x− xj−1) + 3h(x− xj−1)2 − 3(x− xj−1)3, x ∈ [xj−1, xj),

h3 + 3h2(xj+1 − x) + 3h(xj+1 − x)2 − 3(xj+1 − x)3, x ∈ [xj , xj+1),

(xj+2 − x)3, x ∈ [xj+1, xj+2],

0, otherwise.

(2.1)

The whole of cubic B-spline bases functions are zero except ϕj−1, ϕj , ϕj+1, ϕj+2. Hence, for a typical element [xj , xj+1]
with the help of the local coordinate transformation described as h = x − xj , 0 ≤ ζ ≤ h, the cubic B-spline bases
functions on [0, h] for variable ζ can be expressed as follows

ϕj−1 = (1− ζ)3,

ϕj = 1 + 3(1− ζ) + 3(1− ζ)2 − 3(1− ζ)3,

ϕj+1 = 1 + 3ζ + 3ξ2 − 3ζ3,

ϕj+2 = ζ3.

3. B-spline Lie-Trotter splitting Lumped Galerkin Method

The numerical solutions of the MEW equation are obtained by the Lie-Trotter splitting algorithm combined with
the cubic B-spline Lumped Galerkin method. For this reason, equation (1.1) is converted into two partial differential
equations, each of which is solved according to the time intervals [tn, tn+1], linear and non-linear given as below.

Ut − µUxxt = 0, (3.1)

Ut − µUxxt + εU2Ux = 0. (3.2)

In the equations (3.1) and (3.2), u and y are written instead of U, respectively, and the Lie-Trotter splitting algorithm
has been applied as the equations given in the following form

ut − µuxxt = 0,

u(x, tn) = U(x, tn), t ∈ [tn, tn+1], (3.3)

yt − µyxxt + εy2yx = 0,

y(x, tn) = u(x, tn+1), t ∈ [tn, tn+1], (3.4)

in which tn+1 = (n + 1)k. Approximate solutions of the MEW equation presented with appropriate initial-boundary
conditions (1.2) and (1.3) are possible by solving equations (3.3) and (3.4) based on initial conditions. To solve these
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problems, cubic B-spline Lumped Galerkin method is applied and U(xL, t) = U(xR, t) = 0, Ux(xL, t) = Ux(xR, t) = 0
is used as boundary conditions. For this purpose, the problems (3.3) and (3.4) are multiplied by the weight function W
and integrated from xL to xR. For obtaining weak forms, the partial integrals of both problems are gotten by taking
Zm = y2 for the equation (3.4). Let uN (x, t) and yN (x, t) be taken as approximate solutions corresponding to exact
solutions u(x, t) and y(x, t) of problems (3.3) and (3.4), respectively and these approximate ones with the selection of
the time dependent parameters δj and Ψj are given in the form below

uN (x, t) =

N+1∑
j=−1

ϕj(x)δj(t), yN (x, t) =

N+1∑
j=−1

ϕj(x)Ψj(t).

By applying the local coordinate transformation, the non-zero B-splines on e are ϕj−1, ϕj , ϕj+1, ϕj+2. So the approx-
imations given above on [0,h] are presented on the typical element σ as follows

uN (σ, t) =

m+2∑
j=m−1

ϕj(σ)δej (t), (3.5)

yN (σ, t) =

m+2∑
j=m−1

ϕj(σ)Ψe
j(t). (3.6)

For a typical element e, the following equations are formed as a result of applying the local coordinate transformation

∫ h

0

[
Wut + µWσuσt

]
dσ = µWuσt |h0 , (3.7)

∫ h

0

[
Wyt + µWσyσt + εWZmyσ

]
dσ = µWyσt |h0 . (3.8)

As it is known, W is taken as cubic B-splines in the Galerkin method. If the approximate functions of UN and YN
given in equations (3.5) and (3.6) are written in place of u and y in (3.7) and (3.8), and also cubic B-splines are written
instead of W in (3.7) and (3.8), and the following equations are obtained

m+2∑
j=m−1

[( ∫ h

0

ϕiϕj + µϕ
′

iϕ
′

j

)
dσ − µϕiϕ

′

j |h0
]
δ̇j = 0, (3.9)

m+2∑
j=m−1

[( ∫ h

0

ϕiϕj + µϕ
′

iϕ
′

j

)
dσ − µϕiϕ

′

j |h0
]
Ψ̇j +

m+2∑
j=m−1

[( ∫ h

0

εZmϕiϕ
′

j

]
Ψj = 0. (3.10)

Taking δe = (δem−1, δ
e
m, δ

e
m+1, δ

e
m+2), the equations (3.9) and (3.10) given above are obtained as follows

(Ae + µBe − µEe)δ̇e = 0, (3.11)

(Ae + µBe − µEe)Ψ̇e + ε(Ce1)Ψe = 0. (3.12)

Here Ce1 is ZmC
e matrix. For e, the matrices Ae, Be, Ce and Ee are calculated as follows

Ae =

∫ h

0

ϕiϕjdσ,B
e =

∫ h

0

ϕ
′

iϕ
′

jdσ,C
e =

∫ h

0

ϕiϕ
′

jdσ, , E
e = ϕiϕ

′

j |0h .
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If the local equations obtained just above for e are used, the following global equations are obtained for [xL, xR]

(A+ µB − µE)δ̇ = 0, (3.13)

(A+ µB − µE)Ψ̇ + ε(C1)Ψ = 0. (3.14)

In equations (3.13) and (3.14), the unknowns with N + 3 dimensional are δ = (δ−1, δ0, δN , δN+1)T , and Ψ =
(Ψ−1,Ψ0,ΨN ,ΨN+1)T , The matrices A,B,C, and E with general rows presented in the following form are square
matrices and

A =
1

140
(1, 120, 1191, 2416, 1191, 120, 1),

B =
1

10h
(−3,−72,−45, 240,−45,−72,−3),

E = (0, 0, 0, 0, 0, 0, 0),

C =
1

20
(−1,−56,−245, 0, 245, 56, 1),

ZmC =
1

20
(Z1,−18Z1 − 38Z2, 9Z1 − 183Z2 − 71Z3, 10Z1 + 150Z2 − 150Z3 − 10Z4, 71Z2 + 183Z3 − 9Z4, 38Z3 + 18Z4, Z4),

where Zm = (
Um + Um+1

2
)2. Now let’s express that, for convenience, the discretized forms of the derivatives of the

dependent variables u and y in Eqs.(3.3) and (3.4) are given as follows

(.)t =
(.)∗∗ − (.)∗

∆t
, (.)xxt =

(.)∗∗xx − (.)∗xx
∆t

, (3.15)

(.)x =
(.)∗∗x + (.)∗x

2
, (.)xx =

(.)∗∗xx + (.)∗xx
2

. (3.16)

Substituting discretized forms (3.15) and (3.16) in Eqs.(3.13) and (3.14), the following matrix systems are acquired

(A+ µB − µE)δn+1 = (A+ µB − µE)δn, (3.17)

(A+ µB − µE + (εC1)∆t/2)Ψn+1 = (A+ µB − µE − (εC1)∆t/2)Ψn. (3.18)

By the use of the boundary condition U(xL, t) = U(xR, t) = 0 given in (1.3), the parameters (δ−3, δ−2, δ−1, δN+1, δN+2,
δN+3), (Ψ−3,Ψ−2,Ψ−1,ΨN+1,ΨN+2,ΨN+3) are eliminated from the systems (3.17) and (3.18) and unknown param-
eters δ = (δ0, δ1, ..., δN )T , Ψ = (Ψ0,Ψ1, ...,ΨN )T with N + 1 dimension are obtained. Therefore, (N + 1) x (N + 1)
matrix system is acquired. To improve the nonlinear term existing in the system (3.18), an inner iteration given

in the form (Ψ∗)n = Ψn +
1

2
(Ψn − Ψn−1) is needed and it is applied 3-5 times at each time level. At the point

(xm, t), (m = 0(1)N) for any time level, both the knot values and derivatives of the uN and yN can be expressed as

(.)m = ()m+1 + 4()m + ()m−1, (3.19)

(.)
′

m =
3

h
(()m+1 − ()m−1),

(.)
′′

m =
6

h2
(()m+1 − 2()m + ()m−1).
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Let’s also state here that unknown time-parameters δj(t),Ψj(t) are used instead of () on the right side of Eq.(3.19).
By substituting the nodal values in (3.19) in (3.17) and (3.18), the system of equations presented as below is obtained.

µ1δ
n+1
m−3 + µ2δ

n+1
m−2 + µ3δ

n+1
m−1 + µ4δ

n+1
m + µ5δ

n+1
m+1 + µ6δ

n+1
m+2 + µ7δ

n+1
m+3 =

µ1δ
n
m−3 + µ2δ

n
m−2 + µ3δ

n
m−1 + µ4δ

n
m + µ5δ

n
m+1 + µ6δ

n
m+2 + µ7δ

n
m+3,

(3.20)

ρ1Ψn+1
m−3 + ρ2Ψn+1

m−2 + ρ3Ψn+1
m−1 + ρ4Ψn+1

m + ρ5Ψn+1
m+1 + ρ6Ψn+1

m+2 + ρ7Ψn
m+3 =

ρ1Ψn
m−3 + ρ2Ψn

m−2 + ρ3Ψn
m−1 + ρ4Ψn

m + ρ5Ψn
m+1 + ρ6Ψn

m+2 + ρ7Ψn
m+3,

(3.21)

in which

µ1 =
1

140
− 3µ

10h
, µ2 =

120

140
− 72µ

10h
, µ3 =

1191

140
− 45µ

10h
, µ4 =

2416

140
+

240µ

10h
,

µ5 =
1191

140
− 45µ

10h
, µ6 =

120

140
− 72µ

10h
, µ7 =

1

140
− 3µ

10h
,

and

ρ1 =
1

140
− 3µ

10h
− ε( κ

20
)
∆t

2
, ρ2 =

120

140
− 72µ

10h
− ε(56κ

20
)
∆t

2
,

ρ3 =
1191

140
− 45µ

10h
− ε(245κ

20
)
∆t

2
, ρ4 =

2416

140
+

240µ

10h
,

ρ5 =
1191

140
− 45µ

10h
+ ε(

245κ

20
)
∆t

2
, ρ6 =

120

140
− 72µ

10h
+ ε(

56κ

20
)
∆t

2
,

ρ7 =
1

140
− 3µ

10h
+ ε(

κ

20
)
∆t

2
.

where κ = Zm. By using the systems (3.20) and (3.21), the calculation process is started up to the desired time level.
First of all, it is necessary to know the unknown parameter δ0. For this reason, the parameter δ0 is found from the
initial condition and its first derivative in Eq.(1.2). Firstly, system (3.20) is computed for δn+1. Then the earned
value is written in place of Ψn in system (3.21). Now parameter δ1 needs to be calculated. This is calculated with the
parameter δ0 found by Eq.(3.19). Thus, the process is completed at the desired time level.

3.1. Stability Analysis. To examine the stability analysis of systems (3.20) and (3.21) with the cubic B-spline
Galerkin finite element method, the Fourier method [28] is utilized. For stability analysis in the nonlinear term y2yx
in Equation (3.4), the local constant Z will be utilized instead of y2. Then, κ = Zm in system (3.21) be going to
be a constant number. When the Fourier modes δnj = %n1 e

ijΦ,Ψn
j = %n2 e

ijΦ are substituted in systems (3.20),(3.21),

respectively and also the Euler formula eiΦ = cosΦ + isinΦ, is used, Growth factors are obtained as follows

%1 =
A1 − iB1

A1 + iB1
, %2 =

A1 − iC1

A1 + iC1
, (3.22)

A1 =
1

70
a1 −

3µ

5h
a2, B1 = 0, C1 =

εzm∆t

20
c3,

a1 =
1

70
(cos3Φ + 120cos2Φ + 1191cosΦ + 1208),

a2 = −3µ

5h
(cos3Φ + 24cos2Φ + 15cosΦ + 40),

a3 = cos3Φ + cos2Φ + cosΦ.

It is |%1| = |%2| = 1 from Equation (3.22) and therefore |%1|.|%2| = 1. It can be clearly observed that systems (3.20)
and (3.21) are unconditionally stable because of the conditions |%1| ≤ 1 and |%2| ≤ 1 are satisfied.
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Table 1. Analytical values of the invariants I1, I2, I3 for different values of c of Example 1.

method c I1 I2 I3
analytic 0.25 0.7853981633974 0.1666666666667 0.00520833333333

0.50 1.5707963267949 0.6666666666667 0.08333333333333
0.75 2.3561944901923 1.5 0.421875
1 3.1415926535898 2.6666666666667 1.33333333333333

4. Numerical experiments and comparisons

In this section, well-known two test examples,that is, the motion of single solitary wave and the Maxwellian initial
condition pulse, are investigated. New solutions are compared with those previously found in the literature. For this
reason, error norms L2 and L∞ and invariant values I1, I2 and I3 are calculated. Thus, it is checked how accurate
results the new method produces and how reliable it is.
Example 1: The movement of a single solitary wave
The solitary wave solution of the MEW equation (1.1) with physical boundary conditions U(±∞)→ 0 is presented as

U(x, t) = csech[k(x− x0 − vt)],

in which v =
c2

2
, k =

√
1

µ
. Invariants I1, I2 and I3 of the Eq.(1.1) are computed as numerically and analytically

respectively as follows

I1 = h

N∑
j=0

Uj , I2 = h

N∑
j=0

[U2
j + µ(U ′j)

2], I3 = h

N∑
j=0

U4
j ,

and

I1 =
cπ

k
, I2 =

2c2

k
+

2µkc2

3
, I3 =

4c4

3k
.

For the amplitude value c = 1 , the analytical solutions of these invariants are given as I1 = 3.1415926535898, I2 =
2.6666666666667, I3 = 1.3333333333333 respectively. The computed analytical values of the invariants for different
amplitudes are presented in Table 1. In order to measure the effectiveness of the method studied, a comparison of
the current results with the same parameter values of the existing previous studies in the literature is made. That’s
why, µ = 1, x0 = 30 and c = 0.25 with the parameter h = 0.1 are chosen. As can be seen from the Table 2-5, the
acquired results are obtained at different time increments, different end time values T and regions [0, 80], [0, 70] and we
can easily state from the Table 2-5 that the results obtained with new approach are much better than other methods
except refs.[5, 15, 21] given in Tablo 3 and the invariants are compatible and in addition, to further emphasize the
importance of the proposed approach, we can be say that it is remarkable that the invariant values presented in Table
6 are the same as the analytical ones. For the parameters h = 0.1,∆t = 0.05 and different values of amplitudes
1, 0.75, 0.50, 0.25, the motion of solitary wave is given in Figure 1. It is clear from this figure that the bigger wave with
amplitude c = 1 goes a long way because it is faster than the waves with other smaller amplitudes.

Example 2: The Maxwellian initial condition

The movement of the solitary wave is presented with the Maxwellian initial condition

U(x, 0) = e−x
2

,

and boundary conditions U(xL, t) = U(xR, t) = 0. Considering the different values 0.5, 0.1, 0.05, 0.02, 0.005, 0.0025 of
µ and the parameters h = 0.05,∆t = 0.01 at time T = 12.5 throughout this example, a comparison of the invariants
I1, I2 and I3 is given in Table 7 taking into account [7] and [34] and also various solitary wave movements are obtained
for the same values ∆t and h at the time T = 12.5 on the region [−20, 20] and these ones are plotted in Figure 2.
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Table 2. According to the solutions of related studies, comparison of invariants and error norms at
T=20 of Example 1.

method t I1 I2 I3 L2 x 104 L∞ x 104

∆t = 0.2,h = 0.1, T = 20, [0, 80]
LTS.LGall. 5 0.7853982 0.1666665 0.0052083 0.204391 0.114657

10 0.7853982 0.1666665 0.0052083 0.406971 0.230054
15 0.7853983 0.1666666 0.0052083 0.606022 0.345027
20 0.7853983 0.1666666 0.0052083 0.800015 0.457917

TColl.[34] 20 0.7850300 0.1666259 0.0052058 1.471099 0.897036
Coll.[10] 20 0.7852864 0.1665818 0.0052061 2.021476 1.569539
FD.[12] 10 0.7853977 0.1664736 0.0052083 2.701647 2.576377
D.Quad.[5] 20 0.7854013 0.1666670 0.0052084 0.011493 0.007664
LGall.[11] 20 − − − 0.81006 0.45968

Table 3. For existing schemes, comparison of invariants and error norms at T=20 of Example 1.

method I1 I2 I3 L2 x 104 L∞ x 104

∆t = 0.05,h = 0.1, T = 20, [0, 80]
LTS.LGall. 0.7853983 0.1666666 0.0052083 0.80284 0.46094
SS.Coll.[7] 0.7853982 0.1666666 0.0052083 1.75081 1.76288
T-Coll.[34] 0.7850300 0.1666259 0.0052058 1.46806 0.89667
FD.[12] 0.7853977 0.1664735 0.0052083 2.69281 2.56997
Multgrd.[13] 0.7853965 0.1666638 0.0052081 0.05208 0.05456
SD.[15] 0.7853967 0.1666664 0.0052083 0.51873 0.32113
SD.[21] 0.7853967 0.1666663 0.0052083 0.51774 0.32114
P.Gal.[16] 0.7853967 0.1666663 0.0052083 0.80146 0.46121
L.Gal.[20] 0.7853967 0.1666663 0.0052083 0.80098 0.46061

DL.Coll. [22]1̂ 0.7853966 0.1666662 0.0052083 1.75277 1.76465

DL.Coll.[22]2̂ 0.7853966 0.1666662 0.0052083 1.75270 1.76459
Coll.[10] 0.7849545 0.1664765 0.0051995 2.90516 2.49892
D.Quad.[5] 0.7853979 0.1666671 0.0052084 0.01653 0.01194
LGal.[11] 0.7853898 0.1667614 0.0052082 0.79694 0.46553
∆t = 0.05,h = 0.1, T = 20, [0, 70]
LTSL.Gall. 0.7853983 0.1666666 0.0052083 0.80284 0.46094
LGal.[11] 0.7853970 0.1667636 0.0052083 0.80145 0.46009

Table 4. According to the solutions of related studies, comparison of invariants and error norms at
T=1 of Example 1.

method I1 I2 I3 L2 x 104 L∞ x 104

∆t = 0.1,h = 0.1, T = 1, [0, 80]
LTS.LGal. 0.785398 0.166666 0.0052083 0.04104 0.02297

FD.[29]1̂ 0.785341 0.166453 0.0052071 0.29610 0.23507

FD.[29]2̂ 0.787173 0.167079 0.0052460 7.27192 4.11720

FD.[29]3̂ 0.785398 0.166473 0.0052083 0.17711 0.10834
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Table 5. According to the solutions of related studies, comparison of invariants and error norms at
T=20 of Example 1.

method I1 I2 I3 L2 x 104 L∞ x 104

∆t = 0.01,h = 0.1, T = 20,[0,80]
LTS.LGal. 0.7853983 0.1666666 0.0052083 0.80302 0.46113
DL.Coll.[22] 0.7853967 0.1666662 0.0052083 1.75233 1.76422

Table 6. According to the solutions of related studies, comparison of invariants and error norms at
T=20 for different amplitude values c of Example 1.

c I1 I2 I3 L2 x 104 L∞ x 104

∆t = h = 0.01, T = 20, [0, 80]
1.0 LTS.LGall. 3.1415927 2.6666667 1.3333333 0.116354 0.065329

TColl.[34] 3.1415779 2.6666660 1.3333267 1.010366 0.626081
FD.[12] 3.1415790 2.6666350 1.3333310 1.494558 0.987068
Analytical 3.1415927 2.6666667 1.3333333 − −

0.75 LTS.LGall. 2.3561945 1.5000000 0.4218750 0.117483 0.082401
TColl.[34] 2.3561834 1.4999963 0.4218729 0.229900 0.149503
FD.[12] 2.3561860 1.4999790 0.4218745 0.519345 0.366739
Analytical 2.3561945 1.5000000 0.4218750 − −

0.50 LTS.LGall. 1.5707963 0.6666667 0.0833333 0.050773 0.032100
TColl.[34] 1.5707889 0.6666650 0.0833329 0.057187 0.038677
FD.[12] 1.5707920 0.6666588 0.0833333 0.186465 0.150972
Analytical 1.5707963 0.6666667 0.0833333 − −

0.25 LTS.LGall. 0.7853982 0.1666667 0.0052083 0.008053 0.004634
TColl.[34] 0.7853945 0.1666663 0.0052083 0.014686 0.009014
FD.[12] 0.7853963 0.1666644 0.0052083 0.026985 0.026867
Analytical 0.7853982 0.1666667 0.0052083 − −

Table 7. According to the solutions of related studies, The invariants of Example 2 for different
values of µ at T = 12.5.

method I1 I2 I3 I1 I2 I3
µ = 0.5 µ = 0.1

LTS.LGal. 1.77273 1.88048 0.88664 1.77107 1.37451 0.88132
SS.coll.[7] 1.77245 1.88008 0.88623 1.77249 1.37774 0.88627
TColl.[34] 1.77235 1.87971 0.88597 1.77244 1.37783 0.88619

µ = 0.05 µ = 0.02
LTS.LGal. 1.76970 1.30753 0.87524 1.76524 1.25697 0.85785
SS.coll.[7] 1.77254 1.31431 0.88639 1.77275 1.27458 0.88717
TColl.[34] 1.77246 1.31444 0.88644 1.77256 1.27424 0.88660

µ = 0.005 µ = 0.0025
LTS.LGal. 1.74495 1.180638 0.78338 1.72161 1.11702 0.71084
SS.coll.[7] 1.77465 1.25032 0.89902 1.77868 1.24930 0.92893
TColl.[34] 1.77311 1.23603 0.86783 1.76963 1.19626 0.81240
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Figure 1. Movement of a single solitary wave at T=20 for different amplitude values c.



CMDE Vol. 11, No. 1, 2023, pp. 95-107 105

-20 -15 -10 -5 0 5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

-20 -15 -10 -5 0 5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

-20 -15 -10 -5 0 5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c)

-20 -15 -10 -5 0 5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(d)

-20 -15 -10 -5 0 5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(e)

-20 -15 -10 -5 0 5 10 15

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(f)

Figure 2. Maxwellian initial condition for different values of µ.

5. Conclusion

In this article, numerical computation of the MEW equation with Lie-Trotter splitting algorithm combined with
finite element collocation method with quintic B-spline is investigated. The error norms L2 and L∞ and the conser-
vation constants I1, I2, and I3 are calculated to demonstrate the performance of this new algorithm. It can be clearly
seen from the tables presented in the study that the newly obtained numerical solutions are good enough in comparison
with some existing results in the literature. It can also be stated that this new technique can be easily applied to
other partial differential equations used in other fields of science in terms of obtained results and computational cost.
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[4] A. Başhan, A novel outlook to the an alternative equation for modelling shallow water wave: Regularised Long
Wave (RLW) equation, Indian J Pure Appl Math.,(2022), https://doi.org/10.1007/s13226-022-00239-4.
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