- [1] K. Bansal and K. K. Sharma, Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments, Numer. Algorithms, 75(1) (2017), 113-145.
- [2] I. T. Daba and G. F. Duressa, Collocation method using artificial viscosity for time dependent singularly perturbed differential-difference equations, Math. Comput. Simulation, (2021).
- [3] P. Farrell, A. Hegarty, J. M. Miller, E. O’Riordan, and G. I. Shishkin, Robust computational techniques for boundary layers, CRC Press, 2000
- [4] L. Govindarao, S. R. Sahu, and J. Mohapatra, Uniformly convergent numerical method for singularly perturbed time delay parabolic problem with two small parameters, Iran. J. Sci. Technol. Trans. A Sci., 43(5) (2019), 2373-2383.
- [5] L. Govindarao, J. Mohapatra, and A. Das, A fourth-order numerical scheme for singularly perturbed delay parabolic problem arising in population dynamics, J. Appl. Math. Comput., 63(1) (2020), 171-195.
- [6] L. Govindarao and J. Mohapatra, A second order numerical method for singularly perturbed delay parabolic partial differential equation, Eng Comput., 36(2) (2019), 420-444.
- [7] L. Govindarao and J. Mohapatra, Numerical analysis and simulation of delay parabolic partial differential equation involving a small parameter, Eng Comput., 37(1) (2020), 289-312.
- [8] D. Kumar and M. K. Kadalbajoo, A parameter-uniform numerical method for time-dependent singularly perturbed differential-difference equations, Appl. Math. Model., 35(6) (2011), 2805-2819.
- [9] K. Kumar, P. P. Chakravarthy, H. Ramos, and J. Vigo-Aguiar, A stable finite difference scheme and error estimates for parabolic singularly perturbed PDEs with shift parameters, J. Comput. Appl. Math., (2020), 113050.
- [10] C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations, SIAM J. Appl. Math., 42(3), (1982), 502-531.
- [11] C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. V. Small shifts with layer behavior, SIAM J. Appl. Math., 54(1) (1994), 249-272.
- [12] J. Mohapatra and S. Natesan, The parameter-robust numerical method based on defect-correction technique for singularly perturbed delay differential equations with layer behavior, Int. J. Comput. Methods, 7(4) (2010), 573-594.
- [13] P. Mushahary, S. R. Sahu, and J. Mohapatra, A parameter uniform numerical scheme for singularly perturbed differential-difference equations with mixed shifts, J. Appl. Math. Comput. Mech., 6(2) (2020), 344-356.
- [14] P. C. Podila and K. Kumar, A new stable finite difference scheme and its convergence for time-delayed singularly perturbed parabolic PDEs, Comput. Appl. Math., 5(5) (2020), 1-16.
- [15] V. P. Ramesh and B. Priyanga, Higher order uniformly convergent numerical algorithm for time-dependent singularly perturbed differential-difference equations, Differ. Equ. Dyn. Syst., 29(1) (2021), 239-263.
- [16] R. N. Rao and P. P. Chakravarthy, A finite difference method for singularly perturbed differential-difference equations with layer and oscillatory behavior, Appl. Math. Model., 37(8) (2013), 5743-5755.
- [17] N. R. Reddy and J. Mohapatra, An efficient numerical method for singularly perturbed two point boundary value problems exhibiting boundary layers, Nat. Acad. Sci. Lett., 38(4) (2015), 355-359.
- [18] S. R. Sahu and J. Mohapatra, Parameter uniform numerical methods for singularly perturbed delay differential equation involving two small parameters, Int. J. Appl. Comput. Math., 5(5) (2019), 1-19.
- [19] S. R. Sahu and J. Mohapatra, Numerical investigation of time delay parabolic differential equation involving two small parameters, Engineering Computations, 38(4) (2021), 2882-2899.
- [20] S. R. Sahu and J. Mohapatra, Numerical study of time delay singularly perturbedparabolic differential equations involving both small positive and negative space shift, J. Appl. Anal., (2021), DOI: 10.1515/jaa-2021-2064
- [21] P. K. C. Wang, Asymptotic stability of a time-delayed diffusion system, J. Appl. Mech., 30 (1963) 500–504.
|