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Abstract

This article proposes a parameter uniform numerical method for solving a singularly perturbed delay parabolic
initial-boundary-value problem involving mixed space shifts. The model also involves a large delay in time.

Taylor’s series expansion is applied to approximate the retarded terms in the spatial direction. For the time

discretization, the implicit trapezoidal scheme is applied on uniform mesh, and for the spatial discretization, we
use a proper combination of the mid-point upwind and the central difference scheme on Shishkin mesh. The

proposed scheme provides a second-order convergence rate uniformly with respect to the perturbation parameter.

Some comparison results are presented by using the proposed method to support our claim.
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1. Introduction

This article deals with the following singularly perturbed delay parabolic differential-difference equation (SPPDDE)
with a large delay in time: zs + Lεz(x, s) = −f(x, s)z(x, s− δ) + g(x, s) for (x, s) ∈ z,

z
∣∣
Γd

= Φd(x, s), z
∣∣
Γl

= Φl(x, s), z
∣∣
Γr

= Φr(x, s).
(1.1)

Here, Lεz = −εzxx(x, s) + a(x)zx(x, s) + b(x)z(x, s) + c(x)z(x− ξ, s) + d(x)z(x+ η, s), ξ = η = o(ε) are the delay and
the advance parameters in space, respectively. δ > 0 is the delay parameter which is comapratively large in temporal
direction. T is assumed to be T = k δ for k in N. The domains are defined as follows: Ωs = [−δ,T], Ωx = [0, 1],
z = z ∪ ∂z, where z = (0, 1) × (0,T] and ∂z = Γd ∪ Γl ∪ Γr, with Γd = [0, 1] × [−δ, 0],Γl = [−ξ, 0] × (0,T] and
Γr = [1, 1 + η] × (0,T]. We assume a(x), b(x), c(x), d(x), f(x, s), g(x, s), Φd(x, s), Φl(x, s), Φr(x, s) are sufficient
smooth, bounded functions, and independent of ε.

The literature for SPPDDE is quite large. To mention a few: Bansal and Sharma in [1] used a parameter uniform
numerical approach based on non-standard finite difference methods for the solution of SPPDDEs. Daba and Dussera
[2] described a numerical approximation of a similar kind of model problem using the implicit Euler scheme in time and
a cubic B-spline collocation method in space after the application of Taylor’s series expansion to the shift terms. Kumar
and Kadalbajoo [8] approximated a model problem by using a parameter uniform numerical approach comprised of
the standard implicit Euler scheme employing Rothe’s method in time and B-spline collocation method in space. [9]
described a stable finite difference approximation providing much better approximation than the conventional methods.
Lange and Miura [10, 11] carried out a series of investigations on constructing approximate solutions for the existence
and uniqueness of singularly perturbed boundary value problems. At the same time, a higher order method was used
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in [12] using Shishkin mesh for solving singularly perturbed problems with space delay. The authors in [13] described a
hybrid scheme consisting of the cubic spline in fine mesh, and the mid-point upwind scheme in the coarse mesh region.
In [15], the authors used a hybrid numerical approach that combines the implicit Euler in time and the combined
finite difference scheme made out of the midpoint upwind and the central difference scheme in space. In [16], a mesh
is constructed so that the terms containing shift lie on nodal points after discretization. It further studied the effect
of shift on the boundary layer or oscillatory behavior of the solution via a finite difference approach. Almost all the
above methods considered space delay and advance terms, however, do not deal with time delay term.

Feedback control systems where time is required to sense the previous information and to act accordingly form
time delay models. One can refer to [21], which describes a furnace used to process metal sheets. In this process, the
delay occurs due to the finite speed of the controller. In the recent past, several numerical approaches are proposed
for SPPs have a time delay. Govindarao and Mohapatra in [6, 7] used hybrid numerical schemes whereas in [5], a
fourth-order scheme is proposed to solve the problems arising in population dynamics. In [4], the authors proposed
an efficient numerical scheme for SPDDEs containing two small parameters using the implicit Euler scheme for the
time and an upwind scheme on the spatial direction. In [14], the NSFD scheme is used. In [18, 19], the authors used
the hybrid scheme in the spatial direction on the Shishkin mesh and the implicit Euler scheme on a uniform mesh in
the temporal direction. But most of these article dealt with time delay only and no space shift/delay in the model
equations.

Up to now, there exists one article [20] in literature, describing the model SPPDDEs having both, a large time lag
along with space delay and advance terms which deal with a first-order scheme. In this article, a more accurate and
almost second-order scheme is proposed to deal with such specific model (1.1) which is the main contribution of this
work.

2. Preliminaries

When the delay and advance terms associated with the spatial variables are of o(ε), one can assume ξ = µ1ε and
η = µ2ε where µ1 and µ2 are of o(1). Taylor’s series expansion is applied to approximate the retarded terms in spatial
direction. So, we have 

z(x− ξ, s) ≈ z(x, s)− ξzx(x, s) +
ξ2

2
zxx(x, s),

z(x+ η, s) ≈ z(x, s) + ηzx(x, s) +
η2

2
zxx(x, s).

(2.1)

Now for (x, s) ∈ z, the use of (2.1) converts (1.1) to
Lz(x, t) = zs + Lε̃z(x, s) = −f(x, s)z(x, s− δ) + g(x, s),

z
∣∣
Γd

= Φd(x, s),

z(0, s) = Φl(0, t), z(1, s) = Φr(1, s), for s ∈ Ωt.

(2.2)

Here,

Lε̃z(x, s) = −ε̃zxx(x, s) +
(
a(x)− ξc(x) + ηd(x)

)
zx(x, s) +

(
b(x) + c(x) + d(x)

)
z(x, s).

Denote ε̃ =
(
ε− ξ2

2 c(x)− η2

2 d(x)
)
. The choice of smaller ξ and η makes (2.2) a better approximation for (1.1), so we

can have zs + Lε̃z(x, t) ≈ L with error of O(ξ3, η3). Assume that(
b(x) + c(x) + d(x)

)
> γ > 0, c(x) > 2ξ1 > 0, d(x) > 2ξ2 > 0 ∀ x ∈ Ωx.

It is evident that, when ε̃ > 0 and
(
a(x)− ξc(x) + ηd(x)

)
> 2γ1 > 0, the problem exhibits a layer at right hand side.

Similarly, when ε̃ > 0 and
(
a(x)− ξc(x) + ηd(x)

)
≤ −2γ2 < 0, the layer will be at left hand side of the domain. Here,

γ1, γ2 and ξ1, ξ2 are real constants.
The choice of smaller values to ξ and η shall ensure the layer behaviour of the solution to (2.2), refer [10, 11]. Here,

the discussion is made only for the case when the layer appearing at right hand side. A similar numerical approach
can be proposed for the case with left hand side layer. As there is a time delay in (2.1), Ωs = [−δ, kδ]. We use k = 2
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is here. As the solution in [0, 1] × [0, δ] depends upon the solution in [0, 1] × [−δ, 0], which is known and hence, the
analysis is similar to SPP without delay. So, the scheme is proposed in [0, 1]× [δ, 2δ], where z(x, s− δ) is the solution
in [0, 1] × [0, δ]. For any k > 2, one can extend this idea. Below, we provide some basic properties which guarantees
the existence, uniqueness and stabilty of the solution to the model problem (2.2).

2.1. Properties of the solution. For the analysis of the proposed scheme, the analytical properties play a vital role.
So, we provide here the maximum principle and the stability results for the differential operator which are used later.

Lemma 2.1. (Maximum principle) For sufficiently smooth function χ(x, s) satisfying χ(x, s) ≥ 0, ∀(x, s) ∈ Γ =
Γd ∪ Γl ∪ Γr and χs(x, s) + Lε̃χ(x, s) ≥ 0 ∀(x, s) ∈ z, then χ(x, s) ≥ 0, ∀(x, s) ∈ z.

Lemma 2.2. Let ‖.‖ denotes the standard maximum norm. The derivatives of z(x, s) satisfy the following bound:∥∥∥∥∥∂zk(x, s)

∂xk

∥∥∥∥∥ ≤ C(1 + ε̃−k exp(−γ(1− x)/ε̃)
)
. (2.3)

Proof. The proof of these above two lemmas are avilable in [20]. �

3. Finite difference scheme

For the formulation of the numerical scheme, we use uniform mesh in the time domain with step size Λs. The
partition of zs = [−δ, 2δ = T] is given as,

zPs = {sn = nΛs, n = 0, 1 . . . ,P, sP = 0,Λs = δ/P},

zLs = {sn = nΛs, n = 0, 1 . . . ,L, sL = T,Λs = T/L},

where L and P are the number of partitions in [0,T] and [−δ, 0], respectively. So in total, we have N = (L + P)
number of partitions in [−δ, 2δ] . To discretize time in (2.2), the implicit Euler method is used, which is given by,

LN z ∼= zs(x, sn+0.5)− ε̃zxx(x, sn+0.5) +
(
a(x)− ξc(x) + ηd(x)

)
zx(x, sn+0.5) +

(
b(x) + c(x) + d(x)

)
z(x, sn+0.5)

(3.1)

= −f(x, sn+0.5)z(x, sn+0.5 − δ) + g(x, sn+0.5), (3.2)

subjected to the conditions: {
z
∣∣
Γd

= Φd(x, sn+0.5), z
∣∣
Γl

(x, sn+0.5) = Φl(sn+0.5),

z
∣∣
Γr

(x, sn+0.5) = Φr(sn+0.5).
(3.3)

Using Taylor’s expression about (x, sn+0.5) for solutions at sn+1 and sn time levels, we have

z(x, sn+1) = z(x, sn+0.5) +
Λs

2
zs(x, sn+0.5) +

1

2!

(
Λs

2

)2

zss(x, sn+0.5) +
1

3!

(
Λs

2

)3

zsss(x, sn+0.5) + . . . , (3.4)

z(x, sn) = z(x, sn+0.5)− Λs

2
zs(x, sn+0.5) +

1

2!

(
Λs

2

)2

zss(x, sn+0.5)− 1

3!

(
Λs

2

)3

zsss(x, sn+0.5) + . . . (3.5)

Subtracting (3.5) from (3.4) we have,

zs(x, sn+0.5) =
z(x, sn+1)− z(x, sn)

Λs
+ TE ,

TE = −Λs2

4!
zsss(x, sn+0.5). (3.6)

The error E of time discretization is bounded in Ωs and is given by,

‖ E ‖∞≤ CΛs2.
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A similar argument is given in [19]. Using (3.6) and (3.1) and on further arrangement, we have

LNz = −
(
ε− ξ2

2
c(x)− η2

2
d(x)

)
zxx(x, sn+1) +

(
a(x)− ξc(x) + ηd(x)

)
zx(x, sn+1) (3.7)

+
(
b(x) + c(x) + d(x) +

2

Λs

)
z(x, sn+1)

= −f(x, sn+1)z(x, sn+1 − δ) + g(x, sn+1) +
(
ε− ξ2

2
c(x)− η2

2
d(x)

)
zxx(x, sn)

−
(
a(x)− ξc(x) + ηd(x)

)
zx(x, sn)−

(
b(x) + c(x) + d(x)− 2

Λs

)
z(x, sn)− f(x, sn)z(x, sn − δ) + g(x, sn).

Let M be the number of even partitions in space. The transition parameter % is defined as

% = min

(
1

2
,

2

ξ
(ε− ξ2ξ1 − η2ξ2) lnM

)
.

The domain Ωx is divided into two equal sub-domains i.e., [0, 1− %] and [1− %, 1]. Now

Ωx = {x0 = 0, x1, x2, . . . , xM/2 = 1− %, . . . xM = 1}.

Let xm = mhm with hm = xm − xm−1. The standard Shishkin mesh (S-mesh) is denoted by:

xm =


m

2(1− %)

M
, if m = 1, 2, . . . ,

M
2
,

(1− %) +
2%

M
(m−M/2), if m =

M
2

+ 1, . . . ,M− 1.

One may refer [3] for more details on S-mesh. zM,N is defined as the discretized form of z with M and N number
of mesh points in spatial and temporal directions, repectively. The operators are defined as

δ2
xZ

n
m =

2

hm + hm+1

(
δ+
x Z

n
m − δ−x Znm

)
,

δ−x Z
n
m =

Znm − Znm−1

hm
,

δ0
xZ

n
m =

Znm+1 − Znm−1

hm + hm+1
.

(3.8)

The fullydiscrete form is a proper combination of the mid-point upwind and the central difference scheme in space,
on zM,N at (xm, sn+1) is given as

LM,N
h Zn+1

m
∼= F̃ ,

Z−nm = Φd(xm,−sn) n = 0, . . . , P, m = 1, . . . ,M− 1,

Zn+1
0 = Φl(sn+1), Zn+1

M = Φr(sn+1) ∀ s ∈ Ωt,

(3.9)

where,

LM,N
h Zn+1

m
∼=


LM,N
mid Z

n+1
m if 1 < m ≤ M

2
,

LM,N
cen Zn+1

m , if
M
2
< m <M.

Here,

LM,N
mid Zn+1

m = −ε̃mξ2
xZ

n+1
m +

(
a(xm−1/2)− ξc(xm−1/2) + ηd(xm−1/2)

)
ξ−x Z

n+1
m

+
(
b(xm−1/2) + c(xm−1/2) + d(xm−1/2) +

2

Λs

)
Zn+1
m−1/2
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and

LM,N
cen Zn+1

m = −ε̃mξ2
xZ

n+1
m +

(
a(xm)− ξc(xm) + ηd(xm)

)
ξ0
xZ

n+1
m +

(
b(xm) + c(xm) + d(xm) +

2

Λs

)
Zn+1
m .

Also,

F̃ =


−fn+1

m−1/2Z
n−p+1
m + gn+1

m−1/2 − f
n
m−1/2Z

n−p
m + gnm−1/2 − L

M,N
mid Znm, if 1 < m ≤ M

2
,

−fn+1
m Zn−p+1

m + gn+1
m − fnmZn−pm + gnm − LM,N

cen Znm, if
M
2
< m <M,

for time levels sn and sn+1, ε̃m =
(
ε − ξ2

2 c(xm) − η2

2 d(xm)
)
, fm−1/2 =

fm + fm−1

2
, Zm−1/2 =

Zm + Zm−1

2
, with

similar definitions for gm−1/2, am−1/2, bm−1/2, cm−1/2 and dm−1/2. After simplification, we have the following system
of equations 

A−mZ
n+1
m−1 +AcmZ

n+1
m +A+

mZ
n+1
m+1 = F̃ ,

Z−nm = Φd(xm,−sn), n = 0, . . . ,P, m = 1, . . . ,M− 1,

Zn+1
0 = Φl(sn+1), Zn+1

M = Φr(sn+1) ∀(x, s) ∈ zM,N .

(3.10)

The coefficients for 1 < m ≤ M
2

are given by

A+
m =

[
−2ε̃m

~mhm+1

]
,

Acm =
1

Λs
+

[
2ε̃m

hm+1hm

]
+

[
am−1/2 − ξcm−1/2 + ηdm−1/2

hm

]
+

[
bm−1/2 + cm−1/2 + dm−1/2

2

]
,

A−m =
1

Λs
−
[

2ε̃m
~hm

]
−
[
am−1/2 − ξcm−1/2 + ηdm−1/2

hm

]
+

[
bm−1/2 + cm−1/2 + dm−1/2

2

]
,

and for
M
2
< m ≤M are given by

A+
m = −

[
2ε̃m
~mhm

]
+

[
am − ξcm + ηdm

~

]
,

Acm =
2

Λs
+

[
2ε̃m

hm+1hm

]
+ [bm + cm + dm],

A−m = −
[

2ε̃m
~mhm

]
−
[
am − ξcm + ηdm

~m

]
.

where ~m is denoted as: ~m = hm + hm+1. To solve the matrix formed on (3.10), we prefer to use the idea of Thomas
algorithm [17] which takes less computational time compared to the usual matrix inversion method. In order to attain
the stability while using the central difference scheme, the following mild condition is assumed:

M
lnM

≥ 2
max

(
a(x)− ξc(x) + d(x)

)
min

(
a(x)− ξc(x) + d(x)

) . (3.11)

One can find the following error estimate for the proposed numerical scheme on zM,N .

Proposition 3.1. Let z and Z be the solutions of (2.2) and (3.9), respectively on S-mesh. Then the error bounds at
time level sn is given by ∣∣Znm − z(xm, sn)

∣∣ ≤ C(M−2 ln2M+ (Λs)2).
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4. Numerical experiments

The following illustrative example is provided to show the efficacious of our proposed scheme.

Example 4.1. Consider the time delay SPPDDEs with (x, s) ∈ (0, 1)× (0, 2] and

a(x) = 2− x2, b(x) = x− 3, c(s) = 1,

d(s) = 2, f(x, s) = 1, g(x, s) = 10s2exp(−s)x(1− x),

subject to Φd(x, s) = 0, Φl(x, s) = 0, Φr(x, s) = 0

The exact solution for the test problem is unknown. The point-wise errors and the rates of convergence are calculated
using the double mesh principle. In this process, the problem is solved using the proposed scheme on z2M,2N .

The maximum point-wise errors and rates of convergence are computed as,

EM,Λs
ε = max

(xm, sn) ∈ z

∣∣ZM,N (xi, sj)− Z∈M,∈N (xi, sj)
∣∣,

RM,Λs
ε = log2

(
EM,Λs
ε

E2M,Λs/2
ε

)
.

For computational purposes, δ = 1 is considered. Figure 1 shows the existence of the layer on the right of the domain.
It also confirms the sharpness of the layer as ε varies from 1 to 10−5. Figure 2 describes the solution profile at different
time zones for given values of ξ and η. Figure 3 depicts the solution profile whereas Figure 4 shows the log log plots for
different values of the perturbation parameter. Table 1 consisting of EM,Λs

ε and RM,Λs
ε which are in agreement of the

proposed theoretical bounds. Table 2 shows the maximum point-wise error and the coressponding rate of convergence
at fixed time levels with varying values M and ε. Similarly, Table 3 reflects the maximum point-wise error and the
coressponding rate of convergence at different time levels for a fixed values of ε. Hence, from these results, the proposed
scheme is shown to be uniformly convergent and robust, providing almost a second order rate of convergence both in
space and time variables.

5. Conclusion

An efficient second-order numerical scheme is proposed for solving SPPDDEs having a large time lag in time. The
delay and the advance terms in spatial direction are approximated by Taylor’s approximation. The temporal direction
is dealt with by the implicit trapezoidal scheme. Then, the spatial derivative terms are treated with a hybrid scheme
comprising the midpoint upwind and the central difference scheme. Numerical experiments are performed and results
are reported for validation of the theoretical error estimates.
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Figure 1. Layer behavior with M=32 at s = 1, ξ = 0.2 ∗ ε and η = 0.4 ∗ ε for Example 4.1
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Table 1. Numerical results with ξ = η = 0.1 ∗ ε for Example 4.1

Number of partitions in space/ temporal mesh size(Λs)
ε Method 16/ 1

8 32/ 1
16 64/ 1

32 128/ 1
64 256/ 1

128 512/ 1
256

10−3 Scheme in [20] 4.1480e-2 2.8933e-2 2.0069e-2 1.3166e-2 8.1760e-3 4.8525e-4
0.5196 0.5277 0.6081 0.6873 0.7526

Proposed scheme 2.9726e-2 1.4681e-2 5.0074e-3 1.6244e-3 5.1460e-4 1.5874e-4
1.0178 1.5518 1.6242 1.6584 1.6968

10−5 Scheme in [20] 4.1687e-2 2.9042e-2 2.0150e-2 1.3216e-2 8.2042e-3 4.8694e-3
0.5214 0.5273 0.6084 0.6878 0.7526

Proposed scheme 2.9660e-2 1.4702e-2 5.0373e-3 1.6758e-3 5.4486e-4 1.7267e-4
1.0125 1.5453 1.5878 1.6209 1.6579

10−7 Scheme in [20] 4.1689e-2 2.9044e-2 2.0151e-2 1.3216e-2 8.2045e-3 4.8695e-3
0.5214 0.5273 0.6085 0.6878 0.7526

Proposed scheme 2.9660e-2 1.4702e-2 5.0375e-3 1.6762e-3 5.4572e-4 1.7433e-4
1.0125 1.5452 1.5875 1.6190 1.6463

10−9 Scheme in [20] 4.1689e-2 2.9044e-2 2.0151e-2 1.3216e-2 8.2045e-3 4.8695e-3
0.5214 0.5273 0.6085 0.6878 0.7526

Proposed scheme 2.9660e-2 1.4702e-2 5.0375e-3 1.6762e-3 5.4573e-4 1.7434e-4
1.0125 1.5452 1.5875 1.6189 1.6463

Table 2. Numerical results with and δ = 0.6 ∗ ε, η = 0.3 ∗ ε for Example 4.1

Number of mesh intervals in space(M)
ε ↓ 16 32 64 128 256 512

10−1 4.3880e-3 8.6736e-4 4.3958e-4 2.2146e-4 1.1123e-4 5.5744e-5
2.3389 0.9805 0.9890 0.9934 0.9967

10−3 2.3980e-2 1.0320e-3 3.8499e-3 1.3270e-3 4.4375e-4 1.4430e-4
1.2163 1.4226 1.5367 1.5803 1.6207

10−5 2.6078e-2 9.5397e-3 3.6596e-3 1.2648e-3 4.2444e-4 1.3905e-4
1.4508 1.3823 1.5327 1.5753 1.6100

10−7 2.6100e-2 9.5314e-3 3.6575e-3 1.2641e-3 4.2421e-4 1.3898e-4
1.4533 1.3818 1.5327 1.5753 1.6099

Table 3. Numerical results at different time levels with Λt = 1/40, ε = 10−3, δ = 0.2 ∗ ε, and
η = 0.6 ∗ ε for Example 4.1

Number of mesh intervals in space(M)
t ↓ 16 32 64 128 256 512

0.8 9.2778e-3 2.9525e-3 1.0680e-3 3.6525e-4 1.1569e-4 3.5569e-5
1.6518 1.4671 1.5479 1.6586 1.7016

1.2 1.9100e-2 6.3525e-3 2.5071e-3 8.6846e-3 2.8692e-4 8.8675e-5
1.5882 1.3413 1.5295 1.5978 1.6941

1.6 2.3911e-2 9.3857e-3 3.5916e-3 1.2452e-3 4.1909e-4 1.3798e-4
1.3491 1.3858 1.5283 1.5710 1.6028

2 2.2840e-2 1.0344e-2 3.8529e-3 1.3301e-3 4.4815e-4 1.4914e-4
1.1428 1.4247 1.5344 1.5695 1.5873
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