- [1] A. M. A. Adam, E. B. M. Bashier, M. H. A. Hashim, and K. C. Patidar, Fitted Galerkin spectral method to solve delay partial differential equations, Math. Methods Appl. Sci., 39 (2016), 3102–3115.
- [2] T. Ak, S. Dhawan, S. B. Karakoc, S. K. Bhowmik, and K. R. Raslan, Numerical study of Rosenau -KdV equation using finite element method based on collocation approach, Math. Model. Anal., 22 (2017), 373–388.
- [3] E. N. Aksan and A. Ozde, Numerical solution of Korteweg -de Vries equation by Galerkin B-spline finite element method, Appl. Math. Comput., 175 (2006), 1256–1265.
- [4] E. N. Aksan, An application of cubic B-Spline finite element method for the Burgers equation, Therm Sci., 22 (2018), 195–202.
- [5] I. Aziz and R. Amin, Numerical solution of a class of delay differential and delay partial differential equations via Haar wavelet, Appl. Math. Model., 40 (2016), 10286–10299.
- [6] S. K. Bhowmik and S. B. Karakoc, Numerical solutions of the generalized equal width wave equation using the Petrov -Galerkin method, Appl. Anal., 100 (2021), 714–734.
- [7] A. H. Bhrawy, M. A. Abdelkawy, and F. Mallawi, An accurate Chebyshev pseudospectral scheme for multi- dimensional parabolic problems with time delays, Boundary Value Problems, (2015), 1–20.
- [8] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge university press, 2004.
- [9] X. Chen and L. Wang, The variational iteration method for solving a neutral functional-differential equation with proportional delays, Comput. Math. with Appl., 59 (2010), 2696–2702.
- [10] I. Dag, B. Saka, and D. Irk, Galerkin method for the numerical solution of the RLW equation using quintic B-splines, J. Comput. Appl. Math., 190 (2006), 532–547.
- [11] S. Dhawan, S. K. Bhowmik, and S. Kumar, Galerkin-least square B-spline approach toward advection-diffusion equation, Appl. Math. Comput., 261 (2015), 128–140.
- [12] N. Habibi and A. Mesforush, Extending a new two -grid waveform relaxation on a spatial finite element discretiza- tion, Comput. methods differ. equ., 9 (2021), 1148–1162.
- [13] N. Habibi, A. Mesforush, F. J. Gaspar, and C. Rodrigo, Semi -algebraic mode analysis for finite element discreti- sations of the heat equation, Comput. methods differ. equ., 9 (2021), 146–158.
- [14] C. Huang and S. Vandewalle, Unconditionally stable difference methods for delay partial differential equations, Numerische Mathematik, 122 (2012), 579–5601.
- [15] Z. Jackiewicz and B. Zubik-Kowal, Spectral collocation and waveform relaxation methods for nonlinear delay partial differential equations, Appl. Numer. Math., 56 (2006), 433–443.
- [16] S. Kutluay and Y. Ucar, Numerical solutions of the coupled Burgers? equation by the Galerkin quadratic B-spline finite element method, Math. Methods Appl. Sci., 36 (2013), 2403–2415.
- [17] M. Lakestani, Numerical solutions of the KdV equation using B -spline functions, Iran J. Sci. Technol. Trans. A. Sci ., 41 (2017), 409–417.
- [18] M. Lakestani and M. Dehghan, Numerical solution of Fokker -Planck equation using the cubic B -spline scaling functions, Numer. Methods Partial Differ. Equ., 25 (2009), 418–429.
- [19] D. Li, C. Zhang, and H. Qin, LDG method for reaction-diffusion dynamical systems with time delay, Appl. Math. Comput., 217 (2011), 9173–9181.
- [20] D. Li, C. Zhang, and J. Wen, A note on compact finite difference method for reaction -diffusion equations with delay, Appl. Math. Model., 39 (2015), 1749–1754.
- [21] D. Li and C. Zhang, On the long time simulation of reaction -diffusion equations with delay, Sci. World J., (2014), 2014.
- [22] H. Liang, Convergence and asymptotic stability of Galerkin methods for linear parabolic equations with delays, Appl. Math. Comput., 264 (2015), 160–178.
- [23] T. Ozis, A. Esen, and S. Kutluay, Numerical solution of Burgers? equation by quadratic B-spline finite elements, Appl. Math. Comput., 165 (2005), 237–249.
- [24] A. Rachid, M. Bahaj, and R. Fakhar, Finite volume element approximation for time dependent convection diffusion reaction equations with memory, Comput. methods differ. equ., 9 (2021), 977–1000.
- [25] E. Reyes, F. Rodriguez, and J. A. Martin, Analytic -numerical solutions of diffusion mathematical models with delays, Comput. Math. with Appl., 56 (2008), 743–753.
- [26] F. A. Rihan, Computational methods for delay parabolic and time -fractional partial differential equations, Numer. Methods Partial Differ. Equ., 26 (2010), 1556-1571.
- [27] B. Saka and I. Dag, Quartic B-spline collocation algorithms for numerical solution of the RLW equation, Numer. Methods Partial Differ. Equ., 23 (2007), 731–751.
- [28] M. Sana and M. Mustahsan, Finite element approximation of optimal control problem with weighted extended B-splines, Math., 7 (2019), 452.
- [29] A. A. Soliman, A Galerkin solution for Burgers’ equation using cubic B-spline finite elements, Abstr. Appl. Anal., 2012 (2012), Hindawi.
- [30] Z. Sun and Z. Zhang, A linearized compact difference scheme for a class of nonlinear delay partial differential equations, Appl. Math. Model., 37 (2013), 742–752.
- [31] V. Thomee, Galerkin finite element methods for parabolic problems, Springer Science & Business Media, 2007.
- [32] H. Tian, Asymptotic stability analysis of the linear θ -method for linear parabolic differential equations with delay, J. Differ. Equ. Appl., 15 (2009), 473–487.
- [33] H. Tian, D. Zhang, and Y. Sun, Delay -independent stability of Euler method for nonlinear one -dimensional diffusion equation with constant delay, Frontiers of Mathematics in China, 4 (2009), 169–179.
- [34] S. Vandewalle and M. J. Gander, Optimized overlapping Schwarz methods for parabolic PDEs with time-delay, In Domain Decomposition Methods in Science and Engineering, 2005, 291–298.
- [35] S. Wu and S. Gan, Analytical and numerical stability of neutral delay integro-differential equations and neutral delay partial differential equations, Comput. Math. with Appl, 55 (2008), 2426–2443.
- [36] S. L. Wu, C. M. Huang, and T. Z. Huang, Convergence analysis of the overlapping Schwarz waveform relaxation algorithm for reaction-diffusion equations with time delay, IMA J. Numer. Anal., 32 (2012), 632–671.
- [37] J. Wu and X. Zhang, Finite element method by using quartic B-splines, Numer. Methods Partial Differ. Equ., 27 (2011), 818–828.
- [38] S. I. Zaki, A quintic B-spline finite elements scheme for the KdV equation, Comput. Methods Appl. Mech. Eng., 188 (2000), 121–134.
- [39] Q. Zhang and C. Zhang, A compact difference scheme combined with extrapolation techniques for solving a class of neutral delay parabolic differential equations, Appl. Math. Lett., 26 (2013), 306–312.
- [40] B. Zubik-Kowal, Stability in the numerical solution of linear parabolic equations with a delay term, BIT Numerical Mathematics, 41 ( 2001), 191–206.
|