تعداد نشریات | 43 |
تعداد شمارهها | 1,275 |
تعداد مقالات | 15,753 |
تعداد مشاهده مقاله | 51,868,984 |
تعداد دریافت فایل اصل مقاله | 14,692,073 |
برآورد وراثت پذیری، همبستگیهای فنوتیپی و ژنتیکی برای خصوصیات منحنی رشد بلدرچین ژاپنی | ||
پژوهش های علوم دامی (دانش کشاورزی) | ||
دوره 31، شماره 4، اسفند 1400، صفحه 113-126 اصل مقاله (1.24 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/as.2022.40879.1577 | ||
نویسندگان | ||
راضیه ساقی* 1؛ داوودعلی ساقی2 | ||
1گروه علوم دامی-دانشکده کشاورزی-دانشگاه زابل | ||
2مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی | ||
چکیده | ||
زمینه مطالعاتی: صفات رشد به عنوان یکی از ویژگیهای شناخته شده موجودات زنده، به دلیل ارتباط مستقیمی که با سود اقتصادی دارند، از اهمیّت ویژهای برخوردارند. منحنی رشد، تغییرات وزن بدن حیوان را در بازههای مختلف زندگی حیوان نشان میدهد و توصیف ژنتیکی منحنی رشد در تعیین راهبردهای انتخاب به منظور تغییر شکل منحنی رشد می-تواند مفید باشد. هدف: برآورد وراثت پذیری، همبستگیهای فنوتیپی و ژنتیکی برای پارامترهای منحنی رشد و صفات مختلف وزن بدن در بلدرچین ژاپنی میباشد. روش کار: از دادههای 2035 قطعه بلدرچین، نتاج حاصل از 242 بلدرچین نر و 242 بلدرچین ماده که طی سالهای 1398-1396 در مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی جمعآوری شده بود، استفاده شد. پرندگان از زمان هچ تا 42 روزگی به فاصله 7 روز و در طی چهار نسل، به طور انفرادی وزنکشی شدند. به منظور شناسایی عوامل ثابت مؤثّر بر صفات از مدل خطّی رویّه GLM نرمافزار SAS استفاده شد. برای مقایسه میانگین صفات در سطوح مختلف اثرات ثابت، از آزمون توکی و برای تخمین پارامترهای منحنی رشد، از مدل رگرسیون غیرخطّی استفاده شد. اجزای (کو) واریانس و پارامترهای ژنتیکی منحنی رشد و صفت وزن بدن در سنین مختلف حداکثر درستنمایی محدود شده با استفاده از تجزیه و تحلیل چند صفته توسّط نرم افزار DMU برآورد شدند. نتایج: متوسّط پارامترهای تابع غیرخطّی گمپرتز شامل، وزن مجانب (a)، نرخ رشد (b) نرخ بلوغ (k)، به ترتیب 58/ 298 ، 5/3 و 053/0 برآورد شدند. وراثت پذیری وزن هچ، 1، 2، 3، 4، 5 و 6 هفتگی به ترتیب 35/0، 45/0، 42/0، 44/0، 45/0 ، 96/0و 72/0 برآورد گردید. قویترین همبستگی ژنتیکی بین وزن 3 - 4 هفتگی (93/0) و 1 - 2 هفتگی (92/0) و بیشترین همبستگی فنوتیپی هم بین 4-3 هفتگی (83/0) مشاهده شد. نتیجهگیری نهایی: نتایج حاصل از این مطالعه پیشنهاد میکند که به منظور افزایش بازده تولید، انتخاب بر اساس پارامترهای منحنی رشد به جای انتخاب برای وزن بدن صورت گیرد. کلمات کلیدی: بلدرچین، پارامترهای منحنی رشد، همبستگی ژنتیکی، همبستگی فنوتیپی | ||
کلیدواژهها | ||
بلدرچین؛ پارامترهای منحنی رشد؛ همبستگی ژنتیکی؛ همبستگی فنوتیپی | ||
مراجع | ||
Aggrey SE and Cheng KM, 1994. Animal model analysis of genetic (co)variance of growth traits in Japanese quail. Poultry Science 73: 1822–1828.
Aggrey SE, 2002. Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science 81(12): 1782–1788.
Aggrey SE, Ankra-Badu GA and Marks HL, 2003. Effect of long-term divergent selection on growth characteristics in Japanese quail. Poultry Science 82: 538-542.
Akbas Y and Oguz I, 1998. Growth curve parameters of lines of Japanese quail (Coturnix coturnix japonica), unselected and selected for four-week bodyweight. European Poultry Science 62: 104-109.
Akbas Y and Yaylak E, 2000. Heritability estimates of growth curve parameters and genetic correlations between the growth curve parameters and weights at different age of Japanese quail. Archiv Geflügelkunde 64(4): 141–146.
Akbas Y, Takma C and Yaylak E, 2004. Genetic parameters for quail body weights using a random regression model. South African Journal Animal Science 34(2): 104- 109.
Alkan S, Mendes M, Karabag K and Balcioglu MS, 2009. Effects short term divergent selection for 5-week body weight on growth characteristics in Japanese quail. Archive Geflugelkd 73: 124–131.
Anthony NB, Emmerson DA, Nestor KE, Bacon WL, Siegel PB and Dunnington EA, 1991. Comparison of growth curves of weight selected populations of turkeys, quail and chickens. Poultry Science 70: 13-19.
Anthony NB, Nestor KE and Marks HL, 1996. Short-term selection for four-week body weight in Japanese Quail. Poultry Science 75: 1192–1197.
Bahreini Behzadi MR, 2015. Comparison of different growth models and artificial neural network to fit the growth curve of Lori-Bakhtiari sheep. Journal of Ruminant Research 3: 125-148. (in persian)
Barbieri A, Ono RK, Cursino LL, Farah V, Pires MP, Bertipaglia TS, pires AV, Cavani L, Carreno LOD and Fonseca R, 2015. Genetic parameters for body weight in meat quail. Poultry Science 94: 169-171.
Daikwo SI, Dike UA and Dim NI, 2014. Estimation of genetic parameters of weakly body weight and growth rate of japanes quail. LOSR Journal of agriculture and veterinary science 7(10): 56-62.
Darmani Kuhi H, Shabanpour A, Mohit A, Falahi S and France J, 2018. A sinusoidal function and the Nelder-Mead simplex algorithm applied to growth data from broiler chickens. Poultry Science 97(1): 227–235.
Finco EM, Marcato SM, Furlan AC, Rossi RM, Grieser DO, Zancanela V, Moraes de Oliviera TM and Espejo Stanquevis C, 2016. Adjustment of four growth models through Bayesian inference on weight and body nutrient depositions in laying quail. Brazilian Journal of Animal Science 45(12): 737- 744.
Gille U, 2010. Analysis of growth. From http://www.uni-leipzig.de/~vetana/growth.htm.
Gurcan EK, Cobanoglu O, Genc T, 2012. Determination of body weight-age relationship by nonlinear models in Japanese quail. Journal of Animal and Veterinary Advances 11(3): 314- 317.
Gotuzzo AG, Piles M, Delle-Flora RP, Germano JM, Reis JS, Tyska DU and Dionello NJL, 2018. Bayesian hierarchical model for comparison of different nonlinear function and genetic parameter estimates of meat quails. Poultry Science 98: 1601-1609.
Hyankova L, Knizetova H, Dedkova L and Hort J, 2001. Divergent selection shape of growth curve in Japanese quail 1. Responses in growth parameters and food conversion British Poultry Science 42: 583–589.
Kaplan S, Narinc D and Gürcan EK, 2016. Genetic parameter estimates of weekly body weight and Richard’s growth curve in Japanese quail. European Poultry Science 80: 1-10.
Kaplan S and Gürcan EK, 2018. Comparison of growth curve using non-linear regression function in Japanese quail. Journal of Applied Animal Research 46(1): 112-117.
Karabağ K, Alkan S, Karslı T and Balcıoğlu MS, 2017. Genetic changes in growth curve parameters in Japanese quail lines diver-gently selected for body weight. European Poultry Science 81: 1-10.
Kum D, Karakus K and Ozdemir T, 2010. The best non-linear function for body weight at early phase of Norduz female lambs. Trakia Journal of Sciences 8: 62-67.
Lambe NR, Navajas EA, Simm G and Bunger L, 2006. A genetic investigation of various growth models to describe growth of lambs of two contrasting breeds. Journal of Animal Science 84: 2642-2654.
Loibel S, Andrade MG, do Val JB and Freitas ARD, 2010. Richards's growth model and viability indicators for populations subject to interventions. Anais da Academia Brasileira de Ciências 82: 1107-1126.
Lupi TM, León JM, Nogales S, Barba C and Delgado JV, 2016. Genetic parameters of traits associated with the growth curve in Segureña sheep. Animal 10(5):729-735.
Madsen P and Jensen J, 2008. DMU. A package for multivariate analyzing multivariate mixed models. Version 6. University of Aarhus, Faculty Agricultural Sciences (DJF), Department of Genetics and Biotechnology, Research Centre Foulum, Box 50, 8830 Tjele, Denmark.
Mielenz N, Ronny RN and Schuler L, 2006. Estimation of additive and non-additive genetic variances of body weight, egg weight and egg production for quails Coturnix coturnix japonica with an animal model analysis. Archive Tierzucht Dummerstorf 49: 300–307.
Momoh OM, Anebi PE and Carew SN, 2013. Heritability estimates and phenotypic correlations of body and egg traits of domestic pigeon (Colomba livia domestica) reared On-station in Benue State of Nigeria. Research Opinions Animal Veterinary Science 3(10): 370- 373.
Momoh OM, Gambo D and Dim NI, 2014. Genetic parameters of growth, body, and egg traits in Japanese quails (Cotournix cotournix japonica) reared in southern guinea savannah of Nigeria. Journal of Applied Biosciences 79: 6947 – 6954.
Narinc D, Aksoy T, Karaman E and Fırat MZ, 2014. Genetic parameter estimates of growth curve and reproduction traits in Japanese quail. Poultry Science 93 :24–30.
Narinc D, Aksoy T, and Karaman E, 2010. Genetic parameters of growth curve parameters and weekly body weights in Japanese quail. Journal of Animal Veterinary advances 9: 501–507.
National Research Council, 1994. Nutrient requirement of poultry. 9th Ed., National Academy Press, Washington DC. USA.
Nikkhah M, MotaghiTalab M and Zavareh M, 2010. Hyperbolastic vs. Classic Model to Estimate Male Broiler Chicken Growth. Iranian Journal of Animal Science 40: 71-78. (in persian)
Ozsoy AN, 2019a. Egg and chick quality characteristics of meat type Japanese quail (Coturnix coturnix japonica) line by canonical correlation analysis. Fresenius Environmental Bulletin 28(4): 2582-2588.
Ozsoy AN, 2019b. The genetic parameters of weight gain and feed efficiency of Japanese quails (Coturnix coturnix japonica) under Tenebrio molitor L and control nutritional environments. Fresenius Environmental Bulletin 28(3): 2115- 2120.
Ozsoy AN, 2019c. Genetic parameter estimations of bayesian hierarchical linear and nonlinear growth curves in japanese quails. Fresenius Environmental Bulletin 28 (9): 6883-6889.
Resende RO, Martins EN, George PC, Paiva E, Conti ACM, Santos AI, Sakaguti ES and Murakami AE, 2005. Variance components for body weight in Japanese quails. Brazil Journal of Poultry Science 7(1): 23-25.
Saatci M, Dewi I, Aksoy R, Kirmizibayrak T and Ulutas Z, 2002. Estimation of genetic parameters for weekly Live weight in one to one sire and dam pedigree recorded Japanese quail. p20. Proceedings of the 7th World Congress on Genetics Applied to Livestock Production. Paris, France.
Sargolzaei M, Iwaisaki H and Colleau J, 2006. CFC: A tool for monitoring genetic diversity. in Proceedings of the 8th World Congress on Genetics Applied to Livestock Production. Belo Horizonte; Minas Gerais Brazil 13: 27-28.
SAS Institute Inc, 2009. SAS/STAT User’s Guide, Version 9.2. SAS Institute Inc., Cary, NC.
Sezer M, Berberoglu E and Ulutas Z, 2006. Genetic association between sexual maturity and weekly live weights in laying-type Japanese quail. South African Journal of Animal Science 36(2): 142-148.
Singh CB, 2009. Estimation of genetic parameters for growth traits in Japanese quail. Pantnagar Journal of Research 7 (2): 226- 227.
Shokoohmand M, Emam Jomeh Kashan N and Emami Maybody MA, 2007. Estimation of heritability and genetic correlations of body weight in different ages for three strains of Japanese quail. International Journal of Agricultural and Biological 6: 945- 947.
Tigli R, Yaylak E and Balcioglu MS, 1996. Phenotypic and genetic parameters for various yield characteristics in Japanese quail. I. Genetic environmental and phenotypic correlations for live weight. animal science congress, AKBENIS university, Antalia. Turkey.
Vali V, Edriss MA and Rahmani HR, 2005. Genetic parameters of body and some carcass traits in two quail strains. International Journal of Poultry Science 5: 296- 300.
Vuori K, Stranden I, Sevon-Aimonen ML and Mantysaari EA, 2006. Estimation of non-linear growth models by linearization: a simulation study using a Gompertz function. Genetics Selection and Evolution 38: 343-358.
Waheed A, Sajjad Khan M, Safdar, A and Sarwar M, 2011. Estimation of growth curve parameters in Beetal goats. Archiv Tierzucht 54(3): 287-296. | ||
آمار تعداد مشاهده مقاله: 901 تعداد دریافت فایل اصل مقاله: 343 |