- [1] H. Adibi and P. Assari, On the numerical solution of weakly singular Fredholm integral equations of the second kind using Legendre wavelets, Journal of Vibration and Control, 17 (2011), 689–698.
- [2] M. N. Ahmadabadi and H. L. Dastjerdi, Tau approximation method for the weakly singular Volterra-Ham-merstein integral equations, Appl. Math. Comput., 285 (2016), 241–247.
- [3] M. Ahmadian, H. Afshari, and M. Heydari, Numerical solution of It-Volterra integral equation by least squares method, Numerical Algorithms, 84 (2020), 591–602.
- [4] A. Aghajani, J. Bana´s, and Y. Jalilian, Existence of solutions for a class of nonlinear Volterra singular integral equations, Comput. Math. Appl., 62 (2011), 1215–1227.
- [5] P. Assari and M. Dehghan, The numerical solution of nonlinear weakly singular Fredholm integral equations based on the dual-Chebyshev wavelets, Applied and Computational Mathematics, 19 (2020), 3–19.
- [6] K. E. Atkinson, An existence theorem for Abel integral equations, SIAM J. Math. Anal., 5 (1974), 729–736.
- [7] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge university press, 1997.
- [8] Z. Avazzadeh, M. Heydari, and G. Brid Loghmani, Chebyshev cardinal functions for solving Volterra-Fredholm integrodifferential equations using operational matrices, Iranian Journal of Science and Technology (Sciences), 36 (2012), 13–24.
- [9] Z. Avazzadeh, M. Heydari, G. Wenchen, and G. Brid Loghmani, Smooth solution of partial integro-differential equations using radial basis functions, The Journal of Applied Analysis and Computation, 4 (2014), 115–127.
- [10] P. Baratella and A. P. Orsi, A new approach to the numerical solution of weakly singular Volterra integral equa- tions, J. Comput. Appl. Math., 163 (2004), 401–418.
- [11] H. Brunner, A. Pedas, and G. Vainikko, The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations, Math Comp., 68 (1999), 1079–1095.
- [12] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, Cambridge M. A., 2004.
- [13] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods on Fluid Dynamics, Springer-Verlag, 1988.
- [14] M. Colangeli, Small scale hydrodynamics in applications of chaos and nonlinear dynamics in science and engi- neering, Springer International Publishing, 4 (2015), 65–104.
- [15] M. A. Darwish, On quadratic integral equation of fractional orders, J Math Anal Appl., 311 (2005), 112–119.
- [16] K. B. Datta and B. M. Mohan, Orthogonal Functions in Systems and Control, World Sci. Publishing Co., 1995.
- [17] R. Dehbozorgi and K. Nedaiasl, Numerical solution of nonlinear weakly singular Volterra integral equations of the first kind: An hp-version collocation approach, Applied Numerical Mathematics, 161 (2021), 111–136.
- [18] R. Dehbozorgi and K. Maleknejad, Direct Operational Vector Scheme for First-Kind Nonlinear Volterra Integral Equations and Its Convergence Analysis, Mediterranean Journal of Mathematics, 18 (2021), 1–22.
- [19] J. Eshaghi, H. Adibi, and S. Kazem, Solution of nonlinear weakly singular Volterra integral equations using the fractional-order Legendre functions and pseudo-spectral method, Math Methods Appl. Sci., 39 (2016), 3411–3425.
- [20] M. Gholamian, J. Saberi-Nadjafi, and A. R. Soheili, Cubic B-splines collocation method for solving a partial integro differential equation with a weakly singular kernel, Computational Methods Differential Weakly Singular for Equations, 7 (2019), 497–510.
- [21] W. Hackbusch, Stability for Discretization of Integral Equations. In The Concept of Stability in Numerical Math- ematics, Springer, Berlin, Heidelberg, 2014, 167–184.
- [22] M. Heydari, G. Brid Loghmani, S. M. Hosseini, and S. M. Karbassi, Application of hybrid functions for solving duffing-harmonic oscillator, Journal of Difference Equations, 2014 (2014), 1–9.
- [23] H. Kaneko, R. Noren, and Y. Xu, Regularity of the solution of Hammerstein equations with weakly singular kernel, Integral Equations and Operator Theory, 13 (1990), 660–670.
- [24] N. Karamollahi, M. Heydari, and G. Brid Loghmani, Approximate solution of nonlinear Fredholm integral equa- tions of the second kind using a class of Hermite interpolation polynomials, Mathematics and Computers in Simulation, 187 (2021), 414–432.
- [25] N. Karamollahi, M. Heydari, and G. Brid Loghmani, An interpolation-based method for solving Volterra integral equations, Journal of Applied Mathematics and Computing, 2021, 1–32.
- [26] E. G. Ladopoulos, Singular integral equations: linear and non-linear theory and its applications in science and engineering, Springer Science & Business Media, 2013.
- [27] U. Lepik and E. Tamme, Solution of nonlinear Fredholm integral equations via the Haar wavelet method, Proc Estonian Acad Sci Phys Math., 56 (2007), 17–27.
- [28] X. Li, T. Tang, and C. Xu, Numerical solutions for weakly singular Volterra integral equations using Chebyshev and Legendre pseudo-spectral Galerkin methods, Journal of Scientific Computing, 67 (2016), 43–64.
- [29] C. Lubich, Rung-Kutta theory for Volterra and Abel integral equations of the second kind, Math Comput., 41 (1983), 87–102.
- [30] K. Maleknejad and A. Ebrahimzadeh, The use of rationalized Haar wavelet collocation method for solving optimal control of Volterra integral equations, J. Vib. Control, 21 (2015), 1958–1967.
- [31] K. Maleknejad and H. S. Kalalagh, Approximate solution of some nonlinear classes of Abel integral equations using hybrid expansion, Applied Numerical Mathematics, 159 (2021), 61–72.
- [32] K. Maleknejad, R. Mollapourasl, and A. Ostadi, Convergence analysis of Sinc-collocation methods for nonlinear Fredholm integral equations with a weakly singular kernel, J. Comput. Appl. Math., 278 (2015), 1–11.
- [33] A. S. Mohamed, Shifted Jacobi collocation method for Volterra-Fredholm integral equation, Computational Meth- ods for Differential Equations, Accepted manuscript available online from 01 May 2021.
- [34] D. O´regan, R. P. Agarwal, and K. Perera, Nonlinear integral equations singular in the dependent variable, Appl. Math. Lett., 20 (2007), 1137–1141.
- [35] S. Paul, M. M. Panja, and B. N. Mandal, Multiscale approximation of the solution of weakly singular second kind Fredholm integral equation in Legendre multiwavelet basis, J Comput Appl Math., 300 (2016), 275–289.
- [36] M. Saffarzadeh, G. Brid Loghmani, and M. Heydari, An iterative technique for the numerical solution of nonlinear stochastic It Volterra integral equations, Journal of Computational and Applied Mathematics, 333 (2017), 74–86.
- [37] M. Saffarzadeh, M. Heydari, and G. Brid Loghmani, Convergence analysis of an iterative numerical algorithm for solving nonlinear stochastic It-Volterra integral equations with m-dimensional Brownian motion, Applied Nu- merical Mathematics, 146 (2014), 182–198.
- [38] M. Saffarzadeh, M. Heydari, and G. Barid Loghmani, Convergence analysis of an iterative algorithm to solve system of nonlinear stochastic ItVolterra integral equations, Mathematical Methods in the Applied Sciences, 43 (2020), 5212–5233.
- [39] M. N. Sahlan and H. Feyzollahzadeh, Operational matrices of Chebyshev polynomials for solving singular Volterra integral equations, Mathematical Sciences, 11 (2017), 165–171.
- [40] L. Zhu and Y. Wang, Numerical solutions of Volterra integral equation with weakly singular kernel using SCW method, Appl Math Comput., 260 (2015), 63–70.
|