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Abstract

In the current study, a fast, accurate and reliable numerical scheme for approximating second-kind nonlinear Fred-
holm, Volterra, and Fredholm-Volterra integral equations with a weakly singular kernel and invertible nonlinearity

is presented. The computational approach is based upon function especially hybrid one. Hybrid functions give
us the opportunity to achieve an appropriate solution by adjusting a suitable order for polynomials’ degrees and
block-pulse functions. The basic idea of this method is based on using the invertibility of the nonlinear function

as a benefit to reduce the total error and simplify the procedure. The scheme reduces these types of equations

to nonlinear systems of algebraic equations. Convergence analysis of the method under the infinity norm is well-
studied. Numerical results indicate the superiority of the present method compared with other existing method

in the literature.
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1. Introduction

Nonlinear singular integral equations with logarithmic or algebraic kernel have frequently appeared in various
problems, such as mechanic, physics, engineering and chemical reactions [9, 14, 22, 26, 36, 37]. The object of this
study is to approximate the solution of the following nonlinear weakly singular integral equations of the second kind:

u(t) = g(t) + λ

∫
D

k(t, x)ρ
α

(t− x)ψ(u(x))dx, 0 ≤ α ≤ 1, D = [a, b], (1.1)

where

ρ
α

(v) =


v−α, 0 ≤ α < 1,

ln|v|, α = 1.

Moreover, g, k and ψ are known functions chosen from suitable function spaces defined in Section 2. If the parameter
b is a constant then the integral equation is named as Fredholm, otherwise, known as Volterra.

In the recent literature, several algorithms have been proposed to approximate solution of the integral equations
with singular kernels. To present an appropriate numerical scheme for Eq. (1.1), knowing the behavior of the solution
is importance. These equations have singular solutions which behave like x1−α near x = 0. Therefore, it seems the
local view points may be helpful. Hybrid collocation schemes are intensively employed as powerful tools in the sense
of accuracy to approximate the solution of mathematical models such as differential equations, integral equations,
optimal control and etc [5, 8, 18, 20, 30]. In literature, Brunner et al. have widely considered the pseudo-spectral
collocation method with the global error estimation and convergence analysis [11, 12, 24, 25, 33]. Li et al. [28] have
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proposed a pseudo-spectral Galerkin method to solve these equations. Also, Maleknejad et al. [32] have described
Sinc-collocation method for Fredholm types of these equations. Other recent methods include the SCW method [40],
wavelet Galerkin method [35], operational matrix approach [3, 38, 39], Tau method [2], and fractional-order Legendre
collocation method [19]. Recently, the hp−collocation approach accompanied by Jacobi polynomials was described for
nonlinear Abel integral equations [17].
In spite of lots of research to approximate these equations, a few numerical schemes have been worked on when the
kernel is both logarithmic and Abel’s type, especially in a nonlinear case and k(t, x) 6= 1. Furthermore, numerical
schemes for nonlinear weakly singular Fredholm-Volterra integral equations are rarely investigated in the literature.
Regarding the applicability of these equations in real-world problems, so choosing the appropriate schemes with high
accuracy is significant.
The main purpose of the paper is to describe an efficient pseudo-spectral collocation method for Fredholm, Volterra,
and mixed Fredholm-Volterra integral equations with Abel and a logarithmic kernel. The standard basis function is
used to approximate these equations which give the opportunity to choose an arbitrary basis function. Furthermore,
this work is concerned with the uniform convergence analysis of the scheme.
The outline of this study is as follows: section 2 is devoted to some basic concepts and denotations. The description
of the present method is stated in section 3. The convergence analysis under the infinity norm is presented in section
4. In section 5, some experimental examples and their comparison results with other existing methods are provided.

2. Background material

Regularity properties of the solution. In order to introduce a numerical method for Eq. (1.1), knowledge of
the smoothness properties of the exact solution is needful. In the terminology of [11, 23, 29], the regularity properties
of the solution under their mentioned assumptions was obtained that u belongs to Cm,v(a, b] which can be extended
into a continuous function on [a, b]. In other words, u ∈ Cm(a, b] ∩ C[a, b].
Here, Cm,v(D) denotes the class of v−Holder m−times continuously differentiable functions on D and m indicates
the smoothness of the kernel k(t, x) and the known function g(t). For comprehensive details, see Theorem A in [23]
and Theorem 2.1 in [11].
To approximate a continuous function u ∈ C(D), we assign an arbitrary polynomial interpolant P

N
u : D → R with

its following property at N + 1 distinct points ti, i = 1, ..., N + 1:

P
N
u(ti) = u(ti), ti ∈ D.

To be sure that ‖P
N
u− u‖ converges to zero, the Lebesgue constant should be finite for any interpolant operator P

N

[21]. Between all choices of P
N

, one can assign complete polynomial basis functions in L2(D). This choice is valid
since these interpolants have a finite Lebesgue constant and also C(D) ⊂ L2(D). Here, for a sake of good comparison,
we employ the well-known Chebyshev and Legendre polynomials as basis functions {φi}∞i=0 which form complete sets
in L2[a, b], i.e., a function u(t) ∈ L2[a, b] can be represented as

u(t) =

∞∑
i=0

uiφi(t) = UTΦ(t). (2.1)

Consequently, each function u ∈ C(D) may be approximated in terms of Φ
N

(t) as

u(t) ' P
N
u(t) = u

N
(t) =

N∑
i=0

uiφi(t) = UTΦ
N

(t), (2.2)

where U = [u0, u1, ..., uN ] is the unknown vector .
Suppose X = C[a, b] and X

N
= span{φi}Ni=0 ⊂ X. Therefore, there exist a unique best approximation of X

N
for each

u belongs to X as:

‖u− P
N

(u)‖ = inf
g∈X

N

‖u− g‖, (2.3)
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and

P
N

(u) =

N∑
i=0

uiφi(t) = U
T

Φ
N

(t),

where U = [u0, ..., uN ]T . For brevity, let u
N

(t) := P
N

(u) as the best approximation of u(t).

3. Description of the numerical method

Here, we apply a pseudo-spectral collocation scheme for nonlinear second-kind weakly singular Volterra, Fredholm
and Volterra-Fredholm integral equations.
First, assume L

N
(t) := [1, t, t2, ..., tN ]T as the standard polynomial basis functions, then obviously each polynomial

basis Φ(t) = [φ0(t), φ1(t), ..., φ
N

(t)]T can satisfy the following formula

Φ
N

(t) = AL
N

(t), (3.1)

where A is an invertible matrix.
Consider the Eq. (1.1) as

u(t)− g(t)− λ
∫
D

k(t, x)ρ
α

(t− x)ψ(u(x))dx = 0,

or in operator form

u− g − λKGu = 0,

where KGu(t) :=
∫
D
k(t, x)ρ

α
(t− x)ψ(u(x))dx. Now, we rewrite the Eq. (1.1) as

Z(t) = ψ(g(t) + λ

∫
D

k(t, x)ρα(t− x)Z(x)dx), (3.2)

where ψ(u(t)) = Z(t). The approximation of Z(t) using the definition (2.2) is as

Z
N

(t) := ψ(u
N

(t)) =

N∑
i=0

ziφi(t) = ZTΦ
N

(t).

Here, we seek Z
N

(t) instead of u
N

(t) which satisfies in Eq. (3.2) at the collocation points ti,[
Z
N

(t)− ψ(g(t) + λ

∫
D

k(t, x)ρ
α

(t− x)Z
N

(x)dx)

]
t=ti

= 0, i = 0, ..., N, (3.3)

or, regarding the relation (3.1)[
ΦT
N

(t)Z− ψ
(
g(t) + λ(

∫
D

k(t, x)ρ
α

(t− x)LT
N

(x)dx)ATZ
)]
t=ti

= 0, (3.4)

where the collocation points are equi-distance points in this domain without using the start-up point. It should be
noted that the Eq. (1.1) may have a solution with weak singularity at t = a.
For simplification, let us define K

N
=
∫
D
k(t, x)ρ

α
(t− x)LT

N
(x)dx, so the above equation simplify as[

ΦT
N

(t)Z− ψ(g(t) + λK
N
ATZ

)
]t=ti = 0. (3.5)

The above nonlinear system may solve using Newton’s iteration method to obtain the unknown vector U and therefore
the unknown function Z

N
(t). If ψ is an invertible function, then one can derive the approximate solution u

N
(t) =

UΦ
N

(t) = ψ−1(Z
N

(t)). In general case,

u
N

(t) = g(t) + λ

∫
D

k(t, x)ρα(t− x)Z
N

(t)dx. (3.6)

In the present scheme, the integral operator is evaluated at first and then we have a simple nonlinear system to obtain
the approximate solution. This treatment helps us to have low computational complexity and CPU time.
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Remark 3.1. The key idea of the present method is to use the invertibility of the nonlinear function ψ as a benefit
which simplifies the procedure. Moreover, if u(t) belongs to C0 \ C1, then approximating ψ(u(t)) ∈ C1(R) by
polynomials is more accurate than approximating u(t). For instance, when u(t) = t0.5 and ψ(u(t)) = u2(t) = t. As it
can be seen, u(t) has a weak singularity at t = 0 but ψ(u(t)) is smooth enough. The numerical examples 1-4 verify
this claim.

Remark 3.2. The integrals
∫
D
k(ti, x)ρα(ti−x)L

T

N
(x)dx can be evaluated once and then used for any polynomial basis

functions. In addition, the values of
∫
D
k(ti, x)ρ

α
(ti−x)L

T

N
(x)dx can solve quicker than the values of

∫
D
k(ti, x)ρ

α
(ti−

x)Φ
T

N
(x)dx, which yield lower computational cost.

3.1. Approximation of u ∈ C0 \C1. As mentioned in Remark 3.1, if ψ(u(t)) ∈ C1(R) then the described method
works well, otherwise the following discussion may be useful.
As noted about the exact solution of tν−type singularity of the Eq. (1.1), the continuous functions like polynomials
may not be a good interpolant. Since these solutions have a weak singularity at startup points whereas the polynomials
are smooth enough in the whole interval D. In the above discussion, we use global polynomials to solve numerically the
Eq. (1.1). For better result, the polynomial basis functions can generalize into the piecewise forms using block-pulse
functions. These hybrid functions have local view point to approximate more precisely the main problem at each
subinterval of D.
Consider a sample of these hybrid polynomials and block pulse functions.

Definition 3.3. ([16]) Block-pulse functions bn(t), n = 1, ..., N on the interval [0, 1] are defined as

bn(t) =

{
1, t ∈

[
n−1
N , nN

]
,

0, otherwise.

Definition 3.4. ([16]) Hybrid block-pulse functions and Legendre polynomials Hnm(t) with two adjustable parameters
define as follow:

H
nm

(t) =

{
P
m

(2Nt− 2n+ 1), t ∈
[
n−1
N , nN

]
, 1 ≤ n ≤ N,

0, otherwise.

in which m,n denote the degree of Legendre polynomials P
m

(t), m = 0, 1, ...,M − 1 and block-pulse functions,
respectively.

Hybrid functions H
nm

(t) form an orthogonal complete set in L2[0, 1], i.e., a function u(t) ∈ L2[0, 1] can be repre-
sented as

u(t) =

∞∑
m=0

∞∑
n=1

u
nm
H
nm

(t).

Thus, each function u(t) ∈ L2[0, 1] may be approximated as

u
NM

(t) '
M−1∑
m=0

N∑
n=1

unmHnm(t) = UTH(t).

In order to implement the same method described in the previous subsection, first we define the following standard
hybrid polynomials function instead of L(t) = [1, t, t2, ..., tn]:

Definition 3.5. Hybrid basis functions with block-pulse functions are defined as

L(t) := [l
10

(t), ..., l
1M−1

(t), l
20

(t), ..., l
2M−1

(t), ..., l
N0

(t), ..., l
NM−1

]T ,

where

lni(t) =

{
ti, t ∈

[
n−1
N , nN

]
,

0, otherwise,

where 1 ≤ n ≤ N and 0 ≤ i ≤M − 1.
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Similarly to the relation (3.1), there exists a matrix A
NM×NM such that

H(t) = AL(t). (3.7)

Consequently, all the relations (3.2-3.5) are held for H(t).

Remark 3.6. The approach can generalize to the following nonlinear weakly singular Volterra-Fredholm integral
equations:

u(t) = g(t) + λ1

∫
D1

k1(t, x)ρ
α1

(t− x)Z
1
(x)dx+ λ2

∫
D2

k2(t, x)ρ
α2

(t− x)Z
2
(x)dx, (3.8)

where 0 ≤ α1, α2 ≤ 1, D1 = [a, b], D2 = [c, t] and

ρ
α

(v) =


v−α, 0 ≤ α < 1,

ln|v|, α = 1,

Moreover, g, k1, k2, ψ1 and ψ2 are known functions chosen from suitable function spaces defined in section 2. In such
cases, we have two systems like Eq. (3.5) with two nonlinear unknown vectors Z1 = ψ1(u(t)) and Z2 = ψ2(u(t)). In
this regard, we have two nonlinear systems as follows

[
Z

1N
(t)− ψ1

(
g(t) + λ1

∫
D1

k1(t, x)ρ
α1

(t− x)Z
1N

(x)dx

)
+ λ2

∫
D2

k2(t, x)ρ
α2

(t− x)Z
2N

(x)dx)

]
t=ti

= 0,

[
Z

2N
(t)− ψ2

(
g(t) + λ1

∫
D1

k1(t, x)ρ
α1

(t− x)Z
1N

(x)dx

)
+ λ2

∫
D2

k2(t, x)ρ
α2

(t− x)Z
2N

(x)dx)

]
t=ti

= 0.

4. Convergence analysis

Now, we are going to provide the uniform convergence analysis for Eq. (1.1). As noted in the introduction, we will
assume that the solution of Eq. (1.1) exist under some conditions stated in [4, 6, 10, 15, 17, 23, 34]. For convenience,
we consider this equation in Volterra type and ‖.‖ as infinity norm.

Definition 4.1. ([13]) A function g : [0, 1]→ R belongs to Sobolev space W
r,p

[0, 1], if all distributional derivative of
g, g(i), lies into Lp[0, 1] for all 0 ≤ i ≤ r with the norm

‖g ‖W r,p=

(
r∑
i=0

‖g(i)‖Lp
) 1

2

,

where ‖.‖Lp denotes the Lebesgue norm.

Theorem 4.2. ([13]) If g(t) ∈W r,∞
[0, 1](Sobolev space) and g

N
(t) =

N∑
i=0

ciΦi(t) = C
T

Φ(t) be the best approximation

polynomial of g(t), then

‖g(t)− g
N

(t)‖ ≤ CC0N
−r = γN−r,

where C is a constant, C0 = ‖g ‖W r,∞ and γ := CC0.

Theorem 4.3. Suppose that the integral Eq. (1.1) has a unique solution. Under the hypothesis of Theorem 4.2 for
u(t) and assuming that k := sup{|k(x, t) : 0 ≤ x ≤ t ≤ 1} and |ψ′(t)| ≤M, the following error estimate can be derived
as

‖u(t)− u
N

(t)‖ ≤ γN−m + C‖A−1‖N−m+1, (4.1)
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where

A = [φj(ti)−
∫ ti

0

k(ti, x)ρ
α

(ti − x)ψ′(ξ)φj(x)dx]i,j , i, j = 0, 1, ..., N,

assumed to be a nonsingular matrix.

Proof. In the proposed method, uN (t) = UΦ
N

(t) approximates u(t) by collocating the following equation:

f(t) = u
N

(t)−
∫ t

0

k(t, x)ρ
α

(t− x)ψ(u
N

(x))dx. (4.2)

Besides, the best approximation of u(t), ūN (t) satisfies the following relation:

f(t) = u
N

(t)−
∫ t

0

k(t, x)ρ
α

(t− x)ψ(u
N

(t))dx, (4.3)

where u
N

(t) = P
N

(u(t)) = UΦ
N

(t) defined in (2.3). Besides, with triangular inequality,

‖u(t)− u
N

(t)‖ ≤ ‖u(t)− u
N

(t)‖+ ‖u
N

(t)− u
N

(t)‖

≤ E1 + E2,

(4.4)

where E1 can easily be obtained by Theorem 4.2, since u ∈ Cm(a, b] ∩ C[a, b]. To obtain E2, first subtracting Eq.
(4.2) from Eq. (4.3),

f(t)− f(t) = u
N

(t)− u
N

(t)−
∫ t

0

k(t, x)ρ
α

(t− x)(ψ(u
N

(x))− ψ(u
N

(x))dx, (4.5)

or, regarding to mean value theorem,

f(t)− f(t) = u
N

(t)− u
N

(t)−
∫ t

0

k(t, x)ρα(t− x)ψ′(ξ)(uN (x)− u
N

(x))dx, (4.6)

in which ξ ∈ (min(u
N
, u

N
(t)),max(u

N
, u

N
(t)).

Now collocating the above equation with N + 1 distinct points ti,

f(ti)− f(ti) =
N∑
j=0

(uj − uj)φj(ti)−
∫ ti
0
k(ti, x)ρ

α
(ti − x)ψ′(ξ)

N∑
j=0

(uj − uj)φj(x)dx

= (U − U)ΦN (ti)−
∫ ti
0
k(ti, x)ρ

α
(ti − x)ψ′(ξ)(U − U)ΦN (x)dx.

(4.7)

The operator form of the above equation with interpolatory projection operator is

P
N

(f − f) = (I − P
N
Q)(u

N
− u

N
), (4.8)

where the operator Q =
∫ t
0
k(t, x)ρ

α
(t− x)ψ′(ξ)dt and

P
N
Q(g) =

∫ ti

0

k(ti, x)ρα(ti − x)ψ′(ξ)g(x)dx, (4.9)

and the matrix form of Eq. (4.7) is

(F − F ) = A(U − U), (4.10)

where F = [f(ti)]i, F = [f(ti)]i and

A = [φj(ti)−
∫ ti

0

k(ti, x)ρ
α

(ti − x)ψ′(ξ)φj(x)dx]i,j , i, j = 0, 1, ..., N. (4.11)

Now using the Eq. (4.10), the following error bound obtain

‖U − U‖ ≤ ‖A−1‖‖F − F‖. (4.12)
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An upper bound for ‖F − F‖ obtain as follows

‖F − F‖ = max
0≤i≤N

|f(ti)− f(ti)| ≤ max
t∈[0,1]

|f(t)− f(t)| = ‖f(t)− f(t)‖. (4.13)

Now, the subtraction of Eq. (1.1) from Eq. (4.3) and also utilizing mean value theorem, one can conclude that

f(t)− f(t) = u(t)− u
N

(t)−
∫ t

0

k(t, x)ρα(t− x)ψ′(ξ)(u(x)− u
N

(x))dx, (4.14)

where ξ ∈ (min(u, u
N

),max(u, u
N

)). Define

%
α

(v) =

∫
D

ρ
α

(t− x)v(x)dx, t ∈ D, v ∈ C(D). (4.15)

As described in [7, p. 8]), %
α

: C(D) → C(D) is bounded compact operator and ‖%
α
‖ = max

t∈D

∫
D
|ρ
α

(t− x)|dx. It can

be checked that there exist a constant ηα > 0 such that ‖%α‖ ≤ ηα , 0 ≤ α ≤ 1.
Also, using triangular inequality we get

‖f − f‖ ≤ ‖u− u
N
‖+ kM‖%

α
(u− uN )‖

≤ ‖u− u
N
‖(1 + kη

α
M),

(4.16)

in which k := sup{|k(x, t) : 0 ≤ x ≤ t ≤ 1}, |ψ′(x)| ≤M. Therefore, using Theorem 4.2 led to following relation:

‖f(t)− f(t)‖ ≤ (1 + kη
α
M)c

0
N−m, (4.17)

where c
0
> 0 is constant. Finally, from Eq. (4.13) obtain an upper bound for ‖F − F‖,

‖F − F‖ ≤ (1 + kη
α
M)c

0
N−m. (4.18)

Substituting the above Eq. back into Eq. (4.12), we deduce

‖U − U‖ ≤ c
0
(1 + kη

α
M)‖A−1‖N−m. (4.19)

Hence,

‖u
N

(t)− u
N

(t)‖ = max
t∈D
|uN (t)− uN (t)| = max

t∈D

N∑
i=0

|ui(t)− ui(t)| ≤ max
t∈D

N∑
i=0

|ui − ci||φi(t)|

≤ c
1
(N + 1)‖U − U‖ ≤ C‖A−1‖N−m+1,

(4.20)

where c1 := max
t∈D,0≤i≤N

|φi(t)| and C := 2c0c1(1 + kηαM).

It is worthwhile noting that if kη
α
M < 1, then the uniqueness of the solution is provided [23].

Consequently, the error estimation regarding to Eqs. (4.4) and (4.20), can be derived as

‖u(t)− uN (t)‖ ≤ E1 + E2

≤ γN−m + C‖A−1‖N−m+1

= O(N−m+1).

(4.21)

�

This obtained rate of convergence indicate that the higher smoothness of kernel and known function f leads to a
better order of convergence. .
To discuss about the invertibility of matrix A = (I − P

N
Q) defined in Eqs. (4.8-4.11), we need some assumptions.
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Theorem 4.4. ([7, pp. 55-58]) Assume X be a Banach space, Q : X → X be bounded and compact and P
N

be a
bounded family of projections on X with P

N
g → g as N → ∞. Further assume I − Q is nonsingular. Hence, an

operator (I − P
N
Q)−1, for all sufficiently large N exists as a bounded operator on X.

It is worthwhile to note that the operator Q is both bounded and compact if Q(t, x) is continuous [7, p. 8]. We
remark that all above discussion in this section can also apply for Fredholm integral equation and hybrid functions.
For hybrid functions, Theorem 1 changes as follows:

Theorem 4.5. ([31]) Suppose that g(t) ∈ CM

[0, 1] and g
NM

=
M−1∑
m=0

N∑
n=1

cnmHnm(t) = C
T

H(t), be the best approximate

solution by hybrid polynomials of g(t), then

‖g(t)− g
NM

(t)‖ ≤ γ

NM−1M !
, γ = max

t∈[0,1]
|g

(M)

(t)|. (4.22)

5. Numerical experiment

Some examples demonstrate the accuracy and high performance of the scheme. For convenience, let L denote the
number of all used basis functions. Here, we use Chebyshev and Legendre polynomials as basis polynomial functions
that do not differ practically in terms of accuracy. All calculations are supported with Mathematica 9.

5.1. Nonsmooth solution with ψ(u(t)) ∈ C1.

Example 5.1. Consider the nonlinear second-kind weakly singular VIE

u(t) = g(t) +

∫ t

0

|t− x|
−1
2 u2(x)dx, 0 ≤ t ≤ 1, (5.1)

where g(t) = t
1
2 (1− 4

3 t). The exact solution is u(t) = t
1
2 .

The exact solution u(t) has a weak singularity at t = 0. Brunner et al. solved this example with piecewise polynomial
collocation methods on graded grids [11]. The best results of their method has the accuracy of order O(10−5) when
employ 256 collocation points (the number of unknown coefficients). The present method has the accuracy of order
O(10−16) with using only 2 terms. It takes only 0.7 seconds.

Example 5.2. As a test problem, consider the nonlinear second kind VIE with logarithmic kernel and nonsmooth
solution as follows:

u(t) = g(t) + 2

∫ t

0

(t2 + x) ln |t− x|u2(x)dx, 0 ≤ t ≤ 1, (5.2)

in which g(t) is obtained such that the exact solution is u(t) = |t− 0.5|.

The exact solution belongs to the class of C0 \C1. The present approach gives has the accuracy of order O(10−16)
with just three terms (N = 2) in 61 seconds. This result for this nonsmooth solution verifies the efficiency of our
scheme to overcome the difficulties of these singular equations with a few basis functions. Figure 1 depicts both exact
and approximate solution when N = 2.

Example 5.3. Consider the second kind weakly singular Fredholm integral equation

u(t) = g(t) +

∫ 1

0

|t− x|
−1
2 u2(x)dx, 0 ≤ t ≤ 1, (5.3)

in which the known function g(t) with the exact solution u(t) = (t(1− t)) 1
2 can be derived.

This example has been studied in [1, 27, 32] by Sinc collocation, Legendre wavelet and Haar wavelet methods,
respectively. The scheme has the accuracy order O(10−17) when using only 3 basis functions with low CPU time (8.8
seconds). Table 1 illustrates the superiority of our scheme comparing to other methods in literature.
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Figure 1. The exact and approximate solution with L = 3 for Ex. 5.2.

Table 1. Comparison of our method with those results in [1, 27, 32]

t Haar wavelet method Legendre wavelet method DE Sinc-collocation method Present method
L = 32 L = 24 L = 71 L = 3

0.1 1.18E − 02 1.26E − 03 1.01E − 13 6.94E − 17
0.3 1.48E − 03 1.99E − 04 5.60E − 14 0.0
0.5 3.26E − 04 7.68E − 06 8.10E − 15 0.0
0.7 1.48E − 03 1.23E − 06 5.65E − 14 0.0
0.9 1.18E − 02 1.31E − 03 1.01E − 13 1.39E − 17

5.1.1. Long time calculation.

Example 5.4. As a test problem, we study the Fredholm integral equation with logarithmic kernel

u(t) = g(t) + 0.1

∫ T

0

x3|t− x|
−1
3

√
u(x)dx, 0 ≤ t ≤ T, (5.4)

where g(t) is obtained such that the exact solution is u(t) = (t+ 5)2.

This approach gives the exact solution with three terms (N = 2). Figure 2 indicates the absolute error for various
time T . This result again indicates the efficiency of our method with low storage requirements and CPU time.

5.1.2. Nonsmooth solution with ψ(u(t)) ∈ C0 \C1.

Example 5.5. As a test problem, we study the following weakly Fredholm integral equation

u(t) = f(t) +

∫ 1

0

ln(u(x))

(t− x)0.4
dx, 0 ≤ t ≤ 1, (5.5)

where f(t) can obtion such that the exact solution be

u(t) = exp(|t− 1

2
|).

In this example, the exact solution belongs to the class C0 \ C1 and ψ(u(t)) = |t− 1
2 |. As noted in subsection 3.1,

the continuous polynomials functions can not achieve a good accuracy. Hybrid block-pulse functions and Legendre
polynomials works well for this equation. As an advantages of hybrid functions is that the degree of polynomials and
block pulse functions can be adjusted to achieve better approximate solution. Here, the approach obtains the absolute
error of order O(10−14) when we apply N = 2 and M = 2, or L = 4 basis functions. Figure 3 it indicates that the
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Figure 2. Plots of the error in logarithmic scale of Ex. 5.4
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Figure 3. Results of Ex. 5.5 when u22(t) approximates u(t).

proposed procedure is conducive for non-sufficiently smooth solution and also more appropriate to have high accuracy
with low computational cost.

5.1.3. Comparison with other existing scheme.

Example 5.6. Consider the nonlinear second kind weakly singular VIE

u(t) = g(t) +

∫ t

0

xt|t− x|
−1
2 u2(x)dx, 0 ≤ t ≤ 1, (5.6)

where g(t) = t3 − 4096
6435 t

17
2 . The solution is u(t) = t3.

The proposed method gives has the accuracy order O(10−15) when we employ N = 8. This computational method
takes only 3.4 seconds. Recently, Zhu and Wang have studied this problem by using SCW method [40]. Table 2
provides the comparison between our scheme and SCW method when k = 5, M = 2 and so L = 2k−1M = 32.
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Table 2. Comparison of the method with those result in [40] for Ex. 5.6.

t SCW scheme Present scheme
L = 32 L = 9

0.1 5.90E − 05 5.55E − 17
0.3 9.18E − 05 2.77E − 17
0.5 1.12E − 03 0.0
0.7 2.39E − 06 2.91E − 16
0.9 2.99E − 03 1.89E − 15

Example 5.7. The following nonlinear second kind weakly singular VIE is considered

u(t) = g(t) +

∫ t

0

|t− x|
−1
2 exp(u(x))dx, 0 ≤ t ≤ 1, (5.7)

where g(t) = ln(t+ 1) + 2
√
t+

4

3
t
3
2 . The exact solution is u(t) = ln(1 + t).

Recently, this problem is solved by Tau method [2]. Table 3 reports the comparison of Tau approximation and the
present method. It can be easily observed that our scheme has the absolute error of O(10−16) when L = 2 and takes
only 1.7 seconds.

Table 3. Results of our method and [2] for Ex. 5.7.

L Tau method Present scheme

2 −−−− 2.25E − 16
3 5.0E − 03 2.21E − 16
6 3.0E − 03 −−−−
8 2.0E − 05 −−−−
10 9.0E − 06 −−−−

Example 5.8. As an another test problem, consider the following nonlinear second kind weakly singular VIE

u(t) = g(t) +

∫ t

0

|t− x|−0.6 sin(u(x))dx, 0 ≤ t ≤ 1, (5.8)

where g(t) = t− 1.78571 t1.4 F (1; 1.7, 1.2; −0.25 t2). F (a; b; c) is a Hypergeometric function and u(t) = t.

Figure 4 illustrates the results of the present approach and higher accuracy by increasing parameter L.

5.2. Weakly singular Fredholm-Volterra integral equation.

Example 5.9. As the final test problem, consider the following nonlinear weakly singular Fredholm-Volterra integral
equation as follows

u(t) = g(t) + 3

∫ t

0

(x2 + t) |t− x|−0.23u2(x)dx+

∫ 1

0

t Ln|t− x| u3(x)dx, 0 ≤ t ≤ 1 (5.9)

g(t) can easily be computed by knowing u(t) = t.

The absolute error of the suggested method with L = 4 used basis functions is the order of O(10−15). We obtained
this result in 26 seconds.
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Figure 4. Plots of the error in logarithmic scale of Ex. 5.8

6. Conclusion

This work was concerned with the development of an efficient pseudo-spectral method to approximate nonlinear
Fredholm, Volterra, and Fredholm-Volterra integral equations with a singular kernel. The approach is based upon an
arbitrary orthogonal polynomial basis function along with the collocation method. The main benefits of the method
are simplicity of performance, high-order accuracy, and low computational cost.

Theoretically, convergence analysis indicates that the present scheme is precise and of order O(N−m+1), where
m comes from the smoothness degree of the solution, and N shows the quantity of all considered subintervals used
for local approximation. Furthermore, hybrid functions are assigned to approximate some non-smooth solutions with
property ψ(u(t)) ∈ C0 \ C1. The main characteristic of these piecewise polynomials is the capability of adjusting
the degree of polynomials and block pulse function to achieve a suitable approximate solution. The efficiency and
superiority of the scheme for a smooth or non-smooth solution have been shown through the experimental examples.
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