تعداد نشریات | 43 |
تعداد شمارهها | 1,268 |
تعداد مقالات | 15,628 |
تعداد مشاهده مقاله | 51,679,534 |
تعداد دریافت فایل اصل مقاله | 14,564,961 |
بررسی عددی پدیدهی دنباله در توربینهای دو و سهپرهی جریان جزر و مدی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 40، دوره 52، شماره 2 - شماره پیاپی 99، مرداد 1401، صفحه 371-380 اصل مقاله (782.04 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2022.44390.2837 | ||
نویسندگان | ||
روزبه علی پور* 1؛ رامین علی پور2 | ||
1استادیار، گروه مهندسی مکانیک، واحد ماهشهر، دانشگاه آزاد اسلامی، ماهشهر، ایران | ||
2دستیار تحقیق، گروه مهندسی مکانیک، واحد ماهشهر، دانشگاه آزاد اسلامی، ماهشهر، ایران | ||
چکیده | ||
در این مقاله پدیده دنباله، در توربینهای جریان جزر و مدی دو پره و سه پره مورد بررسی قرار گرفته است. جهت تحلیل، از روش دینامیک سیالات محاسباتی در قالب نرمافزار ANSYS-FLUENT استفاده شده است. در ابتدا، توربینها در مقادیر مختلف سرعت نسبی نوک پره مورد ارزیابی قرار گرفتند و بیشینه توان تولیدی آن ها محاسبه گردید. سپس، ناحیه دنباله برای شرایط بیشینه توان تولیدی مورد ارزیابی قرار گرفت. نتایج نشان داد که در سرعت نسبی نوک پره برابر با 5، بیشینه ضریب توان برای هر دو توربین قابل استحصال است که مقدار آن برای توربین سه پره معادل با 35/0 و برای توربین دو پره برابر با 28/0 می باشد. همچنین، پدیده دنباله در توربین های دو پره نسبت به توربین سه پره زودتر به پایان می رسد به گونه ای که؛ در فاصله ای معادل با سیزده برابر قطر توربین نسبت به محل قرارگیری آن، مقدار سرعت برای توربین دو پره به 87% سرعت اولیه و برای توربین سه پره به 81% سرعت اولیه خود بازگشته است. بنابراین، با در نظر گرفتن توان تولیدی بالاتری که از توربینهای سه پره قابل استحصال است، زمانی که مساحت به کار گرفته شده به منظور ایجاد مزرعه اهمیت کمتری داشته باشد، میتوان با چیدمان سه پره توان بیشتری را از مزرعه برداشت کرد. بالعکس، زمانی که مساحت مزرعه از اهمیت خاصی برخوردار باشد، توربینهای دو پره برای استفاده مناسب تر به نظر می رسند. | ||
کلیدواژهها | ||
توربین؛ جریان جزر و مدی؛ پدیده دنباله؛ دینامیک سیالات محاسباتی؛ سرعت نسبی نوک پره؛ ضریب توان | ||
مراجع | ||
[1] Alipour R., Alipour R., Rahimian Koloor S.S., Petrů M., Ghazanfari S.A., On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine. Sustainability, Vol. 12, No. 15, pp. 5985, 2020.
[2] Alipour R., Alipour R., Fardian F., Koloor S.S.R., Petrů M., Performance improvement of a new proposed Savonius hydrokinetic turbine: a numerical investigation. Energy Reports, Vol. 6, No., pp. 3051-3066, 2020.
[3] Ocean S., Wave and Tidal Energy Market Deployment Strategy for Europe. 2014, June.
[4] Alipour, R., Alipour, R., Fardian, F., & Tahan, M. H, Optimum performance of a horizontal axis tidal current turbine: A numerical parametric study and experimental validation. Energy Conversion and Management, Vol. 258, 115533, 2022.
[5] González-Longatt F., Wall P., Terzija V., Wake effect in wind farm performance: Steady-state and dynamic behavior. Renewable Energy, Vol. 39, No. 1, p.p. 329-338, 2012.
[6] Neill S.P., Hashemi M.R., Lewis M.J., Tidal energy leasing and tidal phasing. Renewable Energy, Vol. 85, No., pp. 580-587, 2016.
[7] Thiébot J., Guillou N., Guillou S., Good A., Lewis M., Wake field study of tidal turbines under realistic flow conditions. Renewable Energy, Vol. 151, No., pp. 1196-1208, 2020.
[8] Vennell R., An optimal tuning strategy for tidal turbines. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 472, No. 2195, pp. 20160047, 2016.
[9] Garrett C., Cummins P., The efficiency of a turbine in a tidal channel. Journal of fluid mechanics, Vol. 588, No., pp. 243, 2007.
[10] Alipour R. Finite element analysis of elongation in free explosive forming of aluminum alloy blanks using CEL method. International review of mechanical engineering, Vol. 5, No. 6, pp. 1039-1042, 2011.
[11] Alipour R. Physically-based modelling for sheet metal cone parts forming under blast loading. Mechanics & Industry, Vol. 22, No. 3, 2021.
[12] Chen L., Yao Y., Wang Z.l., Development and validation of a prediction model for the multi-wake of tidal stream turbines. Renewable Energy, No., 2020.
[13] Li X., Li M., Amoudry L.O., Ramirez-Mendoza R., Thorne P.D., Song Q., Zheng P., Simmons S.M., Jordan L.B., McLelland S.J., Three-dimensional modelling of suspended sediment transport in the far wake of tidal stream turbines. Renewable Energy, Vol. 151, No., pp. 956-965, 2020.
[14] Mycek P., Gaurier B., Germain G., Pinon G., Rivoalen E., Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines. Renewable Energy, Vol. 68, No., pp. 876-892, 2014.
[15] Stallard T., Collings R., Feng T., Whelan J., "Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 371, No. 1985, pp. 20120159, 2013.
[16] Coles D., Blunden L., Bahaj A., Experimental validation of the distributed drag method for simulating large marine current turbine arrays using porous fences. International journal of marine energy, Vol. 16, No., pp. 298-316, 2016.
[17] Baba-Ahmadi M.H., Dong P., Numerical simulations of wake characteristics of a horizontal axis tidal stream turbine using actuator line model. Renewable Energy, Vol. 113, No., pp. 669-678, 2017.
[18] Liu J., Lin H., Purimitla S.R., Wake field studies of tidal current turbines with different numerical methods. Ocean Engineering, Vol. 117, No., pp. 383-397, 2016.
[19] Ahmed U., Apsley D., Afgan I., Stallard T., Stansby P., Fluctuating loads on a tidal turbine due to velocity shear and turbulence: Comparison of CFD with field data. Renewable Energy, Vol. 112, No., pp. 235-246, 2017.
[20] Mahmoodi E., Rafee R., Effect of the nozzle shape on its off-design performance in the presence of shock wave and boundary layer separation. Journal of Mechanical Engineering, Vol. 51, No. 2, pp. 205-213, 2021.
[21] Ehghaghi M.B., Ghiyasi K.K., Vajdi M., The Effect of Changes in Impeller geometry of Centrifugal Pump in Cavitation Phenomena. Journal of Mechanical Engineering, Vol. 48, No. 3, pp. 9-18, 2018.
[22] Ahmadi,M.H., Yang Z., The evolution of turbulence characteristics in the wake of a horizontal axis tidal stream turbine. Renewable Energy, Vol. 151, No., pp. 1008-1015, 2020.
[23] Gu J., Cai F., Müller N., Zhang Y., Chen H., Two-Way Fluid–Solid Interaction Analysis for a Horizontal Axis Marine Current Turbine with LES. Water, Vol. 12, No. 1, pp. 98, 2020.
[24] Harrison M.E., Batten W.M.J., Myers L.E., Bahaj A.S., Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renewable Power Generation, Vol. 4, No. 6, pp. 613-627, 2010.
[25] Turnock S.R., Phillips A.B., Banks J., Nicholls-Lee R., Modelling tidal current turbine wakes using a coupled RANS-BEMT approach as a tool for analysing power capture of arrays of turbines. Ocean Engineering, Vol. 38, No. 11, pp. 1300-1307, 2011.
[26] Nuernberg M., Tao L., Three dimensional tidal turbine array simulations using OpenFOAM with dynamic mesh. Ocean Engineering, Vol. 147, No., pp. 629-646, 2018.
[27] Ebdon T., Allmark M.J., O’Doherty D.M., Mason-Jones A., O’Doherty T., Germain G., Gaurier B., The impact of turbulence and turbine operating condition on the wakes of tidal turbines. Renewable Energy, Vol. 165, No., pp. 96-116, 2021.
[28] Zhang Z., Zhang Y., Zhang J., Zheng Y., Zang W., Lin X., Fernandez-Rodriguez E., Experimental study of the wake homogeneity evolution behind a horizontal axis tidal stream turbine. Applied Ocean Research, Vol. 111, No., pp. 102644, 2021.
[29] Chen Y., Sun J., Lin B., Lin J., Guo J., Spatial evolution and kinetic energy restoration in the wake zone behind a tidal turbine: An experimental study. Ocean Engineering, Vol. 228, No., pp. 108920, 2021.
[30] Modali P.K., Vinod A., Banerjee A., Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays. Renewable Energy, Vol. 177, No., pp. 482-494, 2021.
[31] Jo C.H., Lee J.H., Rho Y.H., Lee K.H., Performance analysis of a HAT tidal current turbine and wake flow characteristics. Renewable energy, Vol. 65, No., pp. 175-182, 2014.
[32] Savidge G., Ainsworth D., Bearhop S., Christen N., Elsaesser B., Fortune F., Inger R., Kennedy R., McRobert A., Plummer K.E., Strangford Lough and the SeaGen tidal turbine, in Marine renewable energy technology and environmental interactions. 2014, Springer. p. 153-172.
[33] Farokhi Nejad A., Alipour R., Shokri Rad M., Yazid Yahya M., Rahimian Koloor S. S., & Petrů M., Using finite element approach for crashworthiness assessment of a polymeric auxetic structure subjected to the axial loading. Polymers, Vol. 12, No. 6, pp. 1312, (2020).
[34] Alipour, R., & Nejad, A. F., . Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature. International Journal of Materials Research, Vol. 107, No 5., pp. 406-412, 2016.
[35] Menter F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, Vol. 32, No. 8, pp. 1598-1605, 1994.
[36] Mortazavi M., Razaghi R., Numerical investigation of air suction and blow mechanism for passive control flow over a wind turbine airfoil. Journal of Mechanical Engineering, Vol. 51, No. 3, pp. 201-210, 2021.
[37] Stringer R., Zang J., Hillis A., Unsteady RANS computations of flow around a circular cylinder for a wide range of Reynolds numbers. Ocean Engineering, Vol. 87, No., pp. 1-9, 2014.
[38] Ramana Murthy S., Kishore Kumar S. Effect of different turbulence models on the numerical analysis of axial flow turbine stage of a typical turbofan engine. in Gas Turbine India Conference. 2013. American Society of Mechanical Engineers.
[39] Moshfeghi M., Song Y.J., Xie Y.H., Effects of near-wall grid spacing on SST-K-ω model using NREL Phase VI horizontal axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 107, No., pp. 94-105, 2012.
[40] Ghasemian M., Nejat A., Aerodynamic noise prediction of a horizontal axis wind turbine using improved delayed detached eddy simulation and acoustic analogy. Energy Conversion and Management, Vol. 99, No., pp. 210-220, 2015.
[41] Al-Dabbagh M., Yuce M., Numerical evaluation of helical hydrokinetic turbines with different solidities under different flow conditions. International Journal of Environmental Science and Technology, Vol. 16, No. 8, pp. 4001-4012, 2019.
[42] Ostos I., Ruiz I., Gajic, M., Gómez W., Bonilla A., Collazos C., A modified novel blade configuration proposal for a more efficient VAWT using CFD tools. Energy conversion and management, Vol. 180, No., pp. 733-746, 2019.
[43] Talukdar P.K., Sardar A., Kulkarni V., Saha U.K., Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations. Energy Conversion and Management, Vol. 158, No., pp. 36-49, 2018.
[44] Borkowski D., Węgiel M., Ocłoń P., Węgiel T., CFD model and experimental verification of water turbine integrated with electrical generator. Energy, Vol. 185, No., pp. 875-883, 2019.
[45] Ingram G., Wind turbine blade analysis using the blade element momentum method. version 1.1. Durham University, Durham, No., 2011.
[46] Jing F.M., Ma W.J., Zhang L., Wang S.Q., Wang X.H., Experimental study of hydrodynamic performance of full-scale horizontal axis tidal current turbine. Journal of Hydrodynamics, Ser. B, Vol. 29, No. 1, pp. 109-117, 2017.
[47] Cresswell N., Ingram G., Dominy R., The impact of diffuser augmentation on a tidal stream turbine. Ocean engineering, Vol. 108, No., p.p. 155-163, 2015.
[48] Hemmati A., Wood D.H., Martinuzzi R.J., Wake dynamics and surface pressure variations on two-dimensional normal flat plates. AIP Advances, Vol. 9, No. 4, pp. 045209, 2019.
[49] Layeghmand K., Tabari N.G., Zarkesh M., Improving efficiency of Savonius wind turbine by means of an airfoil-shaped deflector. Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 42, No. 10, pp. 1-12, 2020. | ||
آمار تعداد مشاهده مقاله: 316 تعداد دریافت فایل اصل مقاله: 181 |