تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,490,529 |
تعداد دریافت فایل اصل مقاله | 15,217,836 |
بررسی پروفایل اسیدآمینه، حل شوندگی وخواص آنتی اکسیدانی هیدرولیزات حاصله از پروتئین کینوا | ||
پژوهش های صنایع غذایی | ||
دوره 32، شماره 1، فروردین 1401، صفحه 123-135 اصل مقاله (1.66 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/fr.2021.41561.1759 | ||
نویسندگان | ||
اکرم پزشکی* 1؛ حسام دلیری2؛ مریم محمدیی3؛ حامد همیشه کار4؛ حسین بیرامی5 | ||
1هیات علمی دانشگاه تبریز | ||
2فارغ التحصیل کارشناسی ارشد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران. | ||
3گروه علوم و صنایع غذایی دانشگاه تبریز | ||
4استاد گروه فارماسیوتیکس مرکز تحقیقات کاربردی دارویی، دانشگاه علوم پزشکی تبریز | ||
5استادیار مرکز ملی تحقیقات شوری. سازمات تحقیقات آموزش و ترویج کشاورزی | ||
چکیده | ||
زمینه مطالعاتی: گیاه کینوا با دارا بودن درصد بالایی از پروتئین، مواد مغذی و اسیدآمینههای ضروری دارای خواص فیزیکو شیمایی، عملکردی و آنتیاکسیدانی مطلوب بوده و هیدرولیزات پروتئینی حاصل از آن می توانند به عنوان منابع غذایی زیست فعال در محصولات عملگرا استفاده شوند. هدف: هدف از پژوهش حاضر، بررسی خواص فیزیکوشیمیایی کینوا به عنوان یک منبع پروتئینی مهم به عنوان جایگزین گندم جهت غلبه بر مشکلات بیماران سلیاک است. روش کار: در این مطالعه به استخراج پروتئین دانه کینوا، بررسی پروفایل اسیدآمینه و در ادامه بررسی خصوصیات طیفسنجی فروسرخ کنسانتره پروتئینی و پپتیدهای زیست فعال حاصل از هیدرولیز آن با آنزیم پانکراتین، حلشوندگی و خواص آنتیاکسیدانی پرداخته شده است. نتایج: نتایج در قالب طرح کاملا تصادفی در سطح معنیداری 5% میزان رطوبت را 36/9، خاکستر 29/2، فیبر خام 6/4، پروتئین 51/12، چربی 36/5 و کربوهیدرات 48/71 درصد نشان داد. بیشترین درصد اسیدآمینه کینوا را اسیدآمینههای گلوتامیک اسید و لیزین تشکیل داد ولی از نظر آمینواسیدهای گوگردی کمبود وجود داشت. بیشترین میزان درجه هیدرولیز معادل 17/19 درصد پس از گذشت 180 دقیقه بود. پپتیدهای کینوا در محدوده pH ایزوالکتریک دارای کمترین میزان حلشوندگی بودند . پپتید های زیست فعال کینوا موجب احیای رادیکال DPPH شدند و فعالیت آنتیاکسیدانی بالا داشتند (8/67 درصد پس از 6 ساعت هیدرولیز و پس از8 ساعت به 8/59 درصد کاهش یافت). نتیجهگیری نهایی: در کل میتوان نتیجهگیری کرد گیاه کینوا با دارا بودن درصد بالایی از پروتئین دارای خواص فیزیکو شیمایی، عملکردی و آنتیاکسیدانی مطلوب بوده و پپتید های حاصل از آن میتواند به عنوان منابع غذایی زیست فعال در محصولات عملگرا استفاده شود. | ||
کلیدواژهها | ||
کینوا؛ پانکراتین؛ پپتید زیستفعال؛ طیفسنجی فروسرخ؛ فعالیت آنتـی اکسیدانی | ||
مراجع | ||
حسن فامیان ف و پزشکی نجفآبادی ا، 1396. تولید نانوامولسیون حاوی لینولئیک اسیدکونژوگه (CLA) به روش تشکیل خود به خودی وغنی سازی شیر کم چرب پاستوریزه با آن. پژوهشهای صنایع غذایی، 145-135 (4)27.
مرندی الف، محمدی م، فتح الهی ع، ، پزشکی نجفآبادی ا 1397. غنیسازی شیر کمچرب پاستوریزه با استفاده از نانولیپوزوم حاوی لینولئیک اسیدکونژوگه(CLA). پژوهشهای صنایع غذایی، 165-157 (4)28
Abugoch LE, Romero N, Tapia, CA, Silva J and Rivera, M, 2008. Study of some physicochemical and functional properties of quinoa (Chenopodium quinoa Willd) protein isolates. Journal of Agricultural and Food chemistry 56(12): 4745-4750.
Alashi AM, Blanchard CL, Blanchard CL, Mailer RG, Agboola SO, Mawson J, et al., 2014. Antioxidant properties of Australian canola meal protein hydrolysates. Food Chemistry 146: 500-506.
Bamdad F, Wu J, Chen L, 2011. Effects of enzymatic hydrolysis on molecular structure and antioxidant activity of barley hordein. Journal of Cereal Science 54(1): 20-28.
Berti C, Ballabio C, Restani P, Porrini M, Bonomi F and Iametti S, 2004. Immunochemical and molecular properties of proteins inChenopodium quinoa. Cereal Chemistry 81(2): 275-277.
De Castro RJS and Sato HH 2015. Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International 74: 185-198.
Duran NM, Spelzini D, Wayllace N, Boeris V and da Silva, FLB, 2018. A combined experimental and molecular simulation study of factors influencing interaction of quinoa proteins–carrageenan. International journal of biological macromolecules 107: 949-956.
Elsohaimy SA, Refaay TM and Zaytoun MAM, 2015. Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences, 60(2): 297-305.
Escuredo O, Martín, M. I. G., Moncada, G. W., Fischer S and Hierro, JMH, 2014. Amino acid profile of the quinoa (Chenopodium quinoa Willd.) using near infrared spectroscopy and chemometric techniques. Journal of Cereal Science 60(1): 67-74.
Ferreira DS, Pallone JAL and Poppi RJ, 2015. Direct analysis of the main chemical constituents in Chenopodium quinoa grain using Fourier transform near-infrared spectroscopy. Food Control 48: 91-95.
Fischer S, Wilckens R, Jara J, Aranda M, Valdivia W, Bustamante L, Obal I, 2017. Protein and antioxidant composition of quinoa (Chenopodium quinoa Willd.) sprout from seeds submitted to water stress, salinity and light conditions. Industrial Crops and Products 107: 558-564.
Gallagher E, Gormley TR and Arendt EK, 2004. Recent advances in the formulation of gluten-free cereal-based products. Trends in Food Science & Technology 15(3-4): 143-152.
Gonzalez JA, Roldan A, Gallardo M, Escudero T and Prado FE, 1989. Quantitative determinations of chemical compounds with nutritional value from Inca crops: Chenopodium quinoa. Plant foods for human nutrition 39(4): 331-337.
Jamdar SN, Rajalakshmi V, Pednekar MD, Juan F, Yardi V and Sharma A, 2010. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry 121(1): 178-184.
James LEA, 2009. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Advances in food and nutrition research 58(1):1-31.
Kim SK, Kim YT, Byun HG, Nam KS, Joo DS and Shahidi F, 2001. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. Journal of agricultural and food chemistry 49(4): 1984-1989.
Mäkinen OE, Zannini E, Koehler P and Arendt EK, 2016. Heat-denaturation and aggregation of quinoa (Chenopodium quinoa) globulins as affected by the pH value. Food Chemistry 196: 17-24.
Nishinari K, FangY, Guo S and Phillips GO, 2014. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids 39: 301-318.
Nowak V, Du J and Charrondière UR, 2016. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistr, 193: 47-54.
Ogungbenle HN, 2003. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. International Journal of Food Sciences and Nutrition 54(2): 153-158.
Ogungbenle HN, Oshodi AA and Oladimeji MO, 2009. The proximate and effect of salt applications on some functional properties of quinoa (Chenopodium quinoa) flour. Pakistan Journal Nutrition 8(1): 49-52.
Peng X, Kong B, Xia X and Liu Q, 2010. Reducing and radical-scavenging activities of whey protein hydrolysates prepared with alcalase. International Dairy Journal 20(5): 360-365.
Saito K, Jin DH, Ogawa T, Muramoto K, Hatakeyama E, Yasuhara T and Nokihara K, 2003. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. Journal of Agricultural and Food Chemistry, 51(12), 3668-3674.
Sienkiewicz-Szłapka E, Jarmołowska B, Krawczuk S, Kostyra E, Kostyra H and Iwan M, 2009. Contents of agonistic and antagonistic opioid peptides in different cheese varieties. International Dairy Journal 19(4): 258-263.
Silvestre MPC, Morais HA, Silva, VDM and Silva MR, 2013. Degree of hydrolysis and peptide profile of whey proteins using pancreatin. Nutrire (Impresso): Revista da Sociedade Brasileira de Alimentação e Nutrição: 278-290.
Stikic R, Glamoclija D, Demin M, Vucelic-Radovic B, Jovanovic Z, Milojkovic-Opsenica D and Milovanovic M, 2012. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of cereal science 55(2): 132-138.
Turkut GM, Cakmak H, Kumcuoglu S and Tavman S, 2016. Effect of quinoa flour on gluten-free bread batter rheology and bread quality. Journal of Cereal Science 69: 174-181.
Vega‐Gálvez A, Miranda M, Vergara J, Urib E, Puente L and Martínez EA, 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture 90(15): 2541-2547.
Vilcacundo R, Miralles B, Carrillo W and Hernández-Ledesma B, 2018. In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International 105: 403–411.
Villanueva A, Vioque J, Sánchez-Vioque R, Clemente A, Pedroche J, Bautista J and Millán F,1999. Peptide characteristics of sunflower protein hydrolysates. Journal of the American Oil Chemists' Society 76(12): 1455-1460.
Vioque J, Clemente A, Pedroche J, Yust MM and Millgn F, 2001. Obtencion y aplicacionesde hidrolizad osproteicos. Journal of GrasasAceites 52: 132–136.
Wu HC, Chen HM and Shiau CY, 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food research international 36(9-10): 949-957.
Wu W, Yu PP, Zhang FY, Hx C, ZM J, 2014. Stability and cytotoxicity of angiotensin-Iconverting enzyme inhibitory peptides derived from bovine casein. Journal of Zhejiang University- Science B 15(2): 143-152.
Yin SW, Chen JC, Sun SD, Tang CH, Yang XQ, Wen QB and Qi, JR 2011. Physicochemical and structural characterisation of protein isolate, globulin and albumin from soapnut seeds (Sapindus mukorossi Gaertn.). Food chemistry, 128(2): 420-426.
Zhang F, Lin L and Xie J, 2016. A mini-review of chemical and biological properties of polysaccharides from Momordica charantia. International journal of Biological Macromolecules 92:246-253.
Zhao Q, Xiong H, Selomulya C, Chen DX, Zhong H, Wang S, Sun W and Zhou Q, 2012. Enzymatic hydrolysis of rice dreg protein: Effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chemistry 134: 1360-1367.
Živanović I, Vaštag Z, Popović S, Popović L and Peričin D, 2011. Hydrolysis of Hull-Less pumpkin oil cake protein isolate by Pepsin. Internation Journal of Biology Life Science 5(3): 30-34. | ||
آمار تعداد مشاهده مقاله: 863 تعداد دریافت فایل اصل مقاله: 442 |