- [1] O. Abdulaziz, I. Hashim, and S. Momani, solving sestem of fractional differential equations by homotopy pertur- bation method, Phys. Let. A, 372(4) (2008), 451-459.
- [2] R. S. Adguzel, U. Aksoy, E. Karapinar, and I. M. Erhan, On the solutions of fractional differential equations via Geraghty type hybrid contractions, Appl. Comput. Math, 20(2) (2021), 313-333.
- [3] S. A. Alavi, A. Haghighi, A. Yari, and F. Soltanian, A numerical method for solving fractional optimal control problems using the operational matrix of Mott polynomials, Computational Methods for Differential Equations, 10(3) (2022), 755-773, DOI:10.22034/cmde.2021.39419.1728.
- [4] A. Arikoglu and I. Ozkol, Solution of fractional integro-differential equations by using fractional differential trans- form method, Chaos Solitons Fractals, 40(2) (2009), 521-529.
- [5] E. Ashpazzadeh, M. Lakestani, and A. Fatholahzadeh, Spectral Methods Combined with Operational Matrices for Fractional Optimal Control Problems: A Review, Appl. Comput. Math, 20(2) (2021), 209-235.
- [6] A. H. Bhrawy , M. M. Tharwat, and A. Yildirim, A new formula for fractional integrals of Chebyshev polynomials: application for solving multi-term fractional differential equations, Appl. Math. Model, 37(6) (2013), 4245-4252.
- [7] A. H. Bhrawy and M. A. Zaky, A shifted fractional-order jacobi orthogonal functions: An application for system of fractional differential equations, Appl. Math. Model, 40(2) (2016), 832-845.
- [8] V. Daftardar-geiji and H. Jafari, Adomian decomposition:a tool for solving a system of fractional differential equations, J.Math. Anal. Appl, 301(2) (2005), 508-518.
- [9] E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, A new Jacobi operational matrix: an application for solving fractional differential equations, Appl. Math. Model, 36(10) (2012), 4931-4943.
- [10] A. Gokdogan, E. Unal, and E. Celik, Conformable Fractional Bessel Equation and Bessel Functions, classical Analysis and ODES, (2015), arXiv:1506.07382(math).
- [11] N. Haddadi, Y. Ordokhani, and M. Razzaghi, Optimal control of delay systems by using a hybrid functions approximation, J. Optim. Theory. Appl, 153(2) (2012),338-356.
- [12] M. S. Hashemi, E. Ashpazzadeh, M. Moharrami, and M. Lakestani, Fractional order Alpert multiwavelets for discretizing delay fractional differential equation of pantograph type, Appl. Numer. Math, 170 (2021), 1-13.
- [13] I. Hashim, O. Abdulaziz, and S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul, 14(3) (2009), 674-684.
- [14] S. Kazem, S. Abbasbandy, and S. Kumar, Fractional-order legendre functions for solving fractional-order differ- ential equation, Appl Math Model, 37(7) (2013), 5498-5510.
- [15] F. Kh. Keshi, B. P. Moghaddam, and A. Aghili, A numerical approach for solving a class of variable-order fractional functional integral equations, Comput. Appl. Math, 37(1) (2018),4821-4834.
- [16] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics studies, 204(2006), 1-523.
- [17] B. G. Korenev, Bessel Functions and their Applications, London; New York: Taylor and Francis, 2002.
- [18] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons Press, New York, 1987.
- [19] S. Kumar, D. Kumar, S. Abbasbandy, and M. M. Rashidi, Analytical solution of fractional Navier-stokes equation by using modified Laplace decomposition method, Ain Shams Eng. J, 5(2) (2014), 569-574.
- [20] Y. Li and N. Sun, Numerical solution of fractional differential equations using the generalized bloc pulse operational matrix, Comput. Math. Apple, 62(3) (2011), 1046-1054.
- [21] A. Lotfi, M. Dehghan, and S. A. Yousefi, A nemerical technique for solving fractional optimal control problem, Comput. Math. Appl, 62(3)(2011), 1055-1067.
- [22] J. A. T. Machado and B. P. Moghaddam, A Robust Algorithm for Nonlinear Variable-Order Fractional Control Systems with Delay Publication, Int. J. Nonlinear. Sci. Numer. Simul, 19(3-4) (2018), 231-238.
- [23] M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space -fractional partial differ- ential equations, Appl. Numer. Math, 56(2006), 80-90.
- [24] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John- Wily and Sons Inc.New York, 1993.
- [25] S. Mockary, A. Vahidi, and E. Babolian, An efcient approximate solution of Riesz fractional advection-difusion Equation, Computational Methods for Differential Equations,10(2) (2022), 307-319, DOI:10.22034/cmde.2021.41690.1815.
- [26] B. P. Moghaddam and J. A. T. Machado, A computational approach for the solution of a class of variable-order fractional integro-differential equations with weakly singular kernels De Gruyter, 20(4) (2017), 1021-1042.
- [27] B. P. Moghaddam and J. A. T. Machado, Extended Algorithms for Approximating Variable Order Fractional Derivatives with Applications, Journal of Scientific Computing, 71(3) (2017), 1351-1374.
- [28] B. P. Moghaddam, J. A. T. Machado and H. Behforooz, An integro quadratic spline approach for a class of variable-order fractional initial value problems, Chaos, Solitons and Fractals, 102(c) (2017), 354-360.
- [29] M. A. Moghaddam, Y. E. Tabriz, and M. Lakestani, Solving fractional optimal control problems using Genocchi polynomials, Computational Methods for Differential Equations, 9(1) (2021), 79-93.
- [30] P. Mokhtary, F. GHoreishi, and H. M. Srivastava, The Muntz-Legendre Tau method for fractional differential equations, Appl. Math. Model, 40(2)(2016), 671-684.
- [31] S. Momani and K. Al-Khaled, Numerical solutions for systems of fractional differential equations by thr decom- position method, Appl. Math. Comput, 162(3) (2005), 1351-1365.
- [32] Z. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equations of frac- tional order, Int.J.Nonlinear Sci. Numer.Simul, 7(1) (2006), 27-34.
- [33] W. Okrasinski and L. Plociniczak, A not on fractional equation and its asymptotics, fractional calculus and applied analysis, 16(3) (2013), 559-572.
- [34] I. Podlubny, Fractional Differential Equations, Academic Prees, San Diego, CA, 1999.
- [35] I. Podlubny, Fractional differential equations: An introduction to fractionl derivatives, Fractional Differential equations, to Methods of Their Solution and Some of Their Applications, Elsevier, 1998.
- [36] P. Rahimkhani, Y. Ordokhani, and E. Babolian, Fractional-order Bernoulli wavelets and their applications, Appl. Num. Math, 40(17-18) (2016), 8087-8107.
- [37] M. Rivero, L. Rodriguez-Germa, and J. J. Trujillo, Linear fractional differential equations with variable coeffi- cients, A Mathematics Letters, 21(9) (2008), 892-897 .
- [38] G. Simmons, Differential Equations: With Applications and Historical Notes, New York: McGraw-Hill Companies, 1972.
- [39] S. C. Shiralashetti and A. B. Deshi, An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations, Nonlinear Dynam, 83(1) (2016), 293-303.
- [40] E. Tohidi, A. H. Bhrawy, and Kh. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Model, 37(6) (2013), 4283-4294.
- [41] G. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., London; New York: Cambridge University Press, 1995.
- [42] SH. Yaghoobi, B. P. Moghaddam, and K. Ivaz, An efficient cubic spline approximation for variable-order fractional differential equations with time delay, Nonlinear Dynamics, 87(2) (2017), 815-826.
- [43] SH. Yaghoobi, B. P. Moghaddam, and K. Ivaz, A numerical approach for variable-order fractional unified chaotic systems with time-delay, Computational Methods for Differential Equations, 6(4) (2018), 396-410.
|