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Abstract

..

The object of this paper devotes on offering an indirect scheme based on time-fractional Bernoulli functions in
the sense of Rieman-Liouville fractional derivative which ends up to the high credit of the obtained approximate
fractional Bessel solutions. In this paper, the operational matrices of fractional Rieman-Liouville integration for
Bernoulli polynomials are introduced. Utilizing these operational matrices along with the properties of Bernoulli

polynomials and the least squares method, the fractional Bessel differential equation converts into a nonlinear
system of algebraic. To solve these nonlinear algebraic equations which are a prominent the problem, there is a
need to employ Newton’s iterative method. In order to elaborate the study, the synergy of the proposed method is
investigated and then the accuracy and the efficiency of the method are clearly evaluated by presenting numerical

results.
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1. Introduction

It is not surprising that a growing number of very active researches have studied fractional calculus. Fractional
differential equations (FDEs) have been established generalizations of ordinary differential equations to an arbitrary
order. From this perspective, a history of the expansion of fractional differential operators is located in [24]. In gen-
eral, there could be not any exact solution to some FDEs. The nature of these equations entails some problems which
require the application of certain techniques. Thereupon, it is essential to develop some reliable and efficient schemes
to solve such FDEs. Approximation solution of the FDEs has attracted considerable attention from many researchers.
In recent decades, copious numerical approaches have been developed. These methods comprise Laplace transforms
method[35], Chebyshev polynomials[25], fractional optimal control problems[3, 5, 29], delay FDEs of pantograph[12],
FDEs via Geraghty type[2], Fourier transforms method[19], fractional differential transform method[4], finite difference
method[23], eigenvector expansion[9], Adomian decomposition method[31], variational iteration method[32], homotopy
perturbation method[1], piecewise constant orthogonal functions[20], homotopy analysis method[13], orthogonal poly-
nomials method[7, 30], wavelets method[14, 39], a numerical approach for variable-order fractional functional integral
equations[15], a robust algorithm for nonlinear variable-order fractional control systems[22], extended algorithms for
variable-order fractional derivatives[27], a numerical approach for variable-order fractional unified chaotic systems
with time-delay[43], cubic spline variable-order fractional differential equations with time delay[42], a computational
approach for variable-order fractional integro-differential equations[26] and an integro quadratic spline approach for
a class of variable-order fractional initial value problems[28]. As we know, Bessel functions (BFs) are widely used
functions that often appear in mathematical physics.
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Certainly, by conducting deep historical research, one can notice BFs particularly emerged as Daniel Bernoulli was
investigating the fluctuation of the hanging chain while Euler was studying the vibration of a circular membrane and
Bessel was busy with the research on planetary motion. Although notable cases of what would later be determined as
Bessel functions had been investigated by Euler, Lagrange, and Bernoulli. F. W. Bessel first employed Bessel functions
to explain three body motions, along with the Bessel functions show up in the series expansion on planetary pertur-
bation. Furthermore, copious applications of the BFs have been discovered in mathematics, physics, and engineering
such as propagation of waves, elasticity, fluid motion, and in several problems of potential theory and diffusion relating
to cylindrical symmetry in [17, 38, 41]. Fractional-order Bessel differential the equation is investigated also in [6]. An
uncomplicated category of the fractional modified Bessel equation is utilized in modeling the geometry of the human
eye’s corned [9]. In [10, 33, 37], the authors investigated the problem of the FDEs with variable coefficient and the
fractional Bessel homogeneous equations with regard to the power series.

The available sets of orthogonal functions can be divided into three classes. The first class contains sets of constant
function pieces, for example, Block-pulse, Haar, Walsh, etc. The second class contains a set of orthogonal polynomials,
for example, Chebyshev, Laguerre, Legendre, etc. The third class includes the set of sine and cosine functions in the
Fourier series. Orthogonal functions are meant to be applied when it comes to solving the various problems in dynamic
systems. The main advantage of using orthogonal functions is that it is to be used to break down the problems in the
dynamic system into algebraic transaction systems (linear and nonlinear) using operational matrices, derivatives, and
integrals. The Bernoulli polynomials and Taylor series are not based on orthogonal functions, but in some cases, the
inner product in the multiplication property is zero, however, they have the operational matrix of integration.

In this article we will propose a numerical scheme to solve the inhomogeneous fractional-order Bessel differential
equation of order p as

x2νDνDνz(x) + νxνDνz(x) + ν2(x2ν − p2)z(x) =

∞∑
m=0

amxmν , (1.1)

with boundary conditions(Dirichlet conditions)

I1−νz(x)|x=0 = λ, I1−νz(x)|x=1 = ω, (1.2)

where Dν denoted the Rieman-Liouville derivative ,λ, ω, are constants,
0 < ν < 1, 0 < x ≤ 1, p is a positive non integer number.
If ν = 1, then the equation is the inhomogeneous Bessel differential equation.
If
∑∞

m=0 amxmν ≡ 0, then the homogeneous fractional-order Bessel differential equation of order p achieved as

x2νDνDνz(x) + νxνDνz(x) + ν2(x2ν − p2)z(x) = 0, (1.3)

where 0 < ν < 1 and p is a positive non integer number.
If ν = 1, therefore the equation is the homogeneous Bessel differential equation. Proposing analytical methods to
solve these types of problems is almost impossible and must be solved numerically. To do this, there are copious
methods. The proposed method with the help of using operational matrices has been recognized to illustrate high
efficiency, accuracy, and straightforwardness to be applied. We will restrict our attention to attain numerically a
solution to a time-fractional Bessel differential equation in the Rieman-Liouville fractional derivatives sense. Let us
just go on with the knowledge that we already know, the power series are not appropriate for computation dealing with
large values of arguments. All things considered, an approximation solution has been allotted to the fractional-order
Bessel equation based on Bernoulli functions. In the current paper, a numerical scheme to promise a solution to the
fractional Bessel differential equation is necessitated to be proposed. For this scope, operational matrices of time-
fractional derivative and integration in the Rieman- Liouville sense are constructed. In this respect, all the known and
unknown functions were approximated via the Bernoulli functions. It then, became crucial that electing the procedure
of utilizing operational matrices of Bernoulli functions and the least square approximation scheme, the researcher
decided to allot the system of nonlinear algebraic equations which needed to be solved with Newton’s algorithm.
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2. Fractional calculus

Let us go through some basic concept of the fractional calculus theory which promised to be applied later in the
present article.

Definition 2.1. A real function f(t), t > 0 is said to be in space Cµ, µ ∈ R if there would be a real number p > µ, in
respect of f(t) = tpf1(t) where
f1(t) ∈ C[0,∞) and it is said to be in the space Cn

µ , n ∈ N
∪
{0} if f (n) ∈ Cµ, [8].

Definition 2.2. The Rieman-Liouville fractional integral operator of time ν ≥ 0, f ∈ µ, µ ≥ −1 is determined as
[8, 34]:

Iνaf(t) =
1

Γ(ν)

∫ t

a

(t− s)ν−1f(s)ds, I0af(t) = f(t),

where n− 1 < a ≤ n, n ∈ N and a ∈ R.
The features of the operator Iν which are required in this article, for f, g ∈ Cµ , ν, ν1, ν2 ≥ 0 , β ≥ −1, µ ≥ −1 and
constants λ1, λ2 as:

i: Iν1Iν2f(t) = Iν1+ν2f(t),
ii: Iν(λ1f(t) + λ2g(t)) = λ1I

νf(t) + λ2I
νg(t),

iii: Iν(tβ) = Γ(β+1)
Γ(β+ν+1) t

β+ν .

Definition 2.3. The Rieman-Liouville time-fractional derivative operator of order m− 1 < ν ≤ m is defined as [16]:

Dνz(t) =
1

Γ(m− ν)

dm

dtm

∫ t

0

z(s)

(t− s)ν−m+1
ds, t > 0.

The properties of the Rieman-liouville derivative are as following:

i: IνDνz(t) = z(t)− tν−1

Γ(ν) I
1−νz(t)|t=0, 0 < ν < 1,

ii: DνIνz(t) = z(t),

iii: Dν(tβ) = Γ(β+1)
Γ(β−ν+1) t

β−ν .

Definition 2.4. (Generalized Taylor’s formula) [14]
Let Djνf(t) ∈ C(0, 1], for 0 < ν ≤ 1, j = 0, 1, ...,m. Thereupon, we get

f(t) =
m−1∑
j=0

tjν

Γ(jν + 1)
Djνf(0+) +

tmν

Γ(mν + 1)
Dmνf(η),

with, 0 < η ≤ t, ∀t ∈ (0, 1]. Obviously having the following

|f(t)−
m−1∑
j=0

tjν

Γ(jν + 1)
Djνf(0+)| < Mν

tmν

Γ(mν + 1)
,

where Mν ≥ supη∈(0,1]|Dmνf(η)|.

In sense of ν = 1, we have Taylor’s formula.

3. main results

The usefulness of the derivative operational matrix and integral operational matrix of the fractional order has been
allotted essential in the presented method. Due to such an important role, it is imperative that we first recall the
time-fractional Bernoulli functions (FBFs) and their properties. Of course, then, we obtain their operational matrices
of fractional integration and derivative in the Rieman-Liouville sense.
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3.1. The FBFs and their properties. As it was discussed earlier, the BFs have been proved useful in copious fields
of mathematics such as number theory and the theory of finite differences. The classical Bernoulli polynomials of time
m are determined on interval [0,1] as [40]:

βm(t) =
m∑
i=0

(
m

i

)
βm−it

i, 0 ≤ x ≤ 1,

where βi := βi(0) , i = 0, 1, ...,m , are Bernoulli numbers. Thereupon, the first Bernoulli polynomials recognized as

β0(t) = 1, β1(t) = t− 1

2
, β2(t) = t2 − t+

1

6
, β3(t) = t3 − 3

2
t2 +

1

2
t.

Also, the BFs attain the subsequent form [11]:∫ 1

0

βn(t)βm(t)dt = (−1)n−1 m!n!

(m+ n)!
βm+n, m, n ≥ 1. (3.1)

The BFs establish a complete basis over the interval[0,1], [18].
The FBFs are presented in this subsection. Via employing the classical Bernoulli functions and the alternation of
variable t = xα for α > 0 (see [36]).
The (FBFs) βm(xα), are shortly denoted by βα

m(x) , is determined by

βα
m(t) =

m∑
i=0

(
m

i

)
βα
m−ix

iα, 0 ≤ x ≤ 1, (3.2)

where βi := βi(0) , i = 0, 1, ...,m , are Bernoulli numbers .
By using equations (3.1) and (3.2) for the FBFs with the weight function
wα(x) = xα−1 , we obtain∫ 1

0

βα
n (x)β

α
m(x)wα(x)dx =

1

α
(−1)n−1 m!n!

(m+ n)!
βm+n, m, n ≥ 1.

Also, the FBFs form a full basis over the interval [0,1], (see [18]).
Each function z(x), defined over [0,1], may be developed regarding FBFs as below

z(x) ≃ zm(x) =
m∑

k=0

ckβ
α
k (x) = CTϕα(x),

where C and ϕα(x) are (m+ 1)× 1 vectors illustrated as

C = [c0, c1, ..., cm]T , βα(x) = [βα
0 (x), ..., β

α
m(x)]T , (3.3)

and

ck =

∫ 1

0

y(x)βα
k (x)x

α−1dx, k = 0, 1, ...,m.

3.2. The FBFs operational matrix of the Fractional-order derivative. The major purpose of the present
subsection is recognized to extract the FBFs operator matrix of fractional derivative.
The Rieman-liouville fractional-order derivative of the vector βα(x) given in equations (3.2) and (3.3), can be expressed
by:

Dνβα(x) = F (ν,α)βα(x), (3.4)

where F (ν,α) is the operational matrix of fractional derivative of order ν in the Rieman-liouville sense with (m+ 1)×
(m+ 1) dimension.
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By employing equation (3.2) and features of operator Dν for i = 0, 1, ...,m, it is obtained

Dνβα
i (x) = Dν(

i∑
r=0

(
i

r

)
βα
i−rx

αr) =

i∑
r=0

(
i

r

)
βα
i−rD

ν(xαr)

=

i∑
r=0

(
i

r

)
βα
i−r(

Γ(αr + 1)

Γ(αr + 1− ν)
)xαr−ν =

i∑
r=0

b
(ν,α)
(i,r) x

αr−ν , (3.5)

where

b
(ν,α)
(i,r) = (

Γ(αr + 1)

Γ(αr + 1− ν)
)

(
i

r

)
βα
i−r,

can be expanded xαr−ν via the fractional-order Bernoulli polynomials as

xαr−ν ≃
m∑
j=0

φ
(ν,α)
(r,j) β

α
j (x), (3.6)

hence, by substituting the above equation into equation (3.5) for i = 0, 1, ...,m , the following form is achieved

Dνβα
i (x) =

i∑
r=0

b
(ν,α)
(i,r)

m∑
j=0

φ
(ν,α)
(r,j) β

α
j (x) =

m∑
j=0

(

i∑
r=0

Θ
(ν,α)
(i,j,r))β

α
j (x), (3.7)

where

Θ
(ν,α)
(i,j,r) = b

(ν,α)
(i,r) φ

(ν,α)
(r,j) .

Equation (3.7) can be rewritten as

Dνβα
i (x) = [

i∑
r=0

Θ
(ν,α)
(i,0,r),

i∑
r=0

Θ
(ν,α)
(i,1,r), ...,

i∑
r=0

Θ
(ν,α)
(i,m,r)]β

α(x), i = 0, ...,m,

hence, F (ν,α) obtained as

F (ν,α) =



Θ
(ν,α)
(0,0,0) Θ

(ν,α)
(0,1,0) . . . Θ

(ν,α)
(0,m,0)∑1

r=0 Θ
(ν,α)
(1,0,r)

∑1
r=0 Θ

(ν,α)
(1,1,r) . . .

∑1
r=0 Θ

(ν,α)
(1,m,r)

...
...

. . .
...∑m−1

r=0 Θ
(ν,α)
(m−1,0,r)

∑m−1
r=0 Θ

(ν,α)
(m−1,1,r) . . .

∑m−1
r=0 Θ

(ν,α)
(m−1,m,r)∑m

r=0 Θ
(ν,α)
(m,0,r)

∑m
r=0 Θ

(ν,α)
(m,1,r) . . .

∑m
r=0 Θ

(ν,α)
(m,m,r)


.

3.3. The FBFs operational matrix of the time-fractional integration. The Rieman-Liouville fractional inte-
gration of the vector βα(x) presented in equation (3.3) commented by:

Iνβα(x) = G(ν,α)βα(x), (3.8)

where G(ν,α) is the (m+ 1)× (m+ 1) fractional operational matrix of integration.
Due to the analytic form of βα(x) in equation (3.2) and the features of operator Iν , for i = 0, 1, ...,m, subsequent
form is provided:

Iνβα
i (x) = Iν(

i∑
r=0

(
i

r

)
βα
i−rx

αr) =
i∑

r=0

(
i

r

)
βα
i−rI

ν(xαr)

=
i∑

r=0

(
i

r

)
βα
i−r(

Γ(αr + 1)

Γ(αr + 1− ν)
)xαr+ν =

i∑
r=0

δ
(ν,α)
(i,r) x

αr+ν , (3.9)
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where

δ
(ν,α)
(i,r) = (

Γ(αr + 1)

Γ(αr + 1− ν)
)

(
i

r

)
βα
i−r,

on the other hand, xαr+ν can be developed by the FBFs as

xαr+ν ≃
m∑
j=0

a
(ν,α)
(r,j) β

α
j (x), (3.10)

by putting the above equation into equation (3.9) for i = 0, 1, ...,m , it can be written

Iνβα
i (x) =

i∑
r=0

δ
(ν,α)
(i,r)

m∑
j=0

a
(ν,α)
(r,j) β

α
j (x) =

m∑
j=0

(
i∑

r=0

∆
(ν,α)
(i,j,r))β

α
j (x), (3.11)

where

∆
(ν,α)
(i,j,r) = δ

(ν,α)
(i,r) a

(ν,α)
(r,j) .

Equation (3.11) can be rewritten as

Iνβα
i (x) = [

i∑
r=0

∆
(ν,α)
(i,0,r),

i∑
r=0

∆
(ν,α)
(i,1,r), ...,

i∑
r=0

∆
(ν,α)
(i,m,r)]β

α(x), i = 0, ...,m,

hence, we have

G(ν,α) =



∆
(ν,α)
(0,0,0) ∆

(ν,α)
(0,1,0) . . . ∆

(ν,α)
(0,m,0)∑1

r=0 ∆
(ν,α)
(1,0,r)

∑1
r=0 ∆

(ν,α)
(1,1,r) . . .

∑1
r=0 ∆

(ν,α)
(1,m,r)

...
...

. . .
...∑m−1

r=0 ∆
(ν,α)
(m−1,0,r)

∑m−1
r=0 ∆

(ν,α)
(m−1,1,r) . . .

∑m−1
r=0 ∆

(ν,α)
(m−1,m,r)∑m

r=0 ∆
(ν,α)
(m,0,r)

∑m
r=0 ∆

(ν,α)
(m,1,r) . . .

∑m
r=0 ∆

(ν,α)
(m,m,r)


.

4. Existence and uniqueness of the solution

We aim to investigate the existence and uniqueness of the solution for the fractional Bessel equation (1.1). In this
article, Iρ = (−ρ, 0)

∪
(0, ρ) for any ρ > 0 will be defined.

Theorem 4.1. Let p be a positive non integer number, and suppose that ρ be a positive constant. Suppose that the
radius of convergence of

∑∞
m=0 amxmν is at least ρ and there exists a constant δ > 0 satisfies the condition

| am+2

cm
|≤ Γ[(m+ 2)ν + 1]Γ[(m+ 1)ν + 1]

δ2Γ[(m+ 1)ν + 1]Γ(mν + 1)
, (4.1)

where

cm =



∑[m2 ]
i=0 a2i(−ν2)m−2i

∏[m2 ]
j=i

1
Γ((2j)ν+1)

Γ(((2j)−2)ν+1)
+

Γ((2j)ν+1)
Γ(((2j)−1)ν+1)

−ν2p2

(for even m),

∑[m2 ]
i=0 a2i+1(−ν2)m−(2i+1)

∏[m2 ]
j=i

1
Γ((2j+1)ν+1)

Γ(((2j+1)−2)ν+1)
+

Γ((2j+1)ν+1)
Γ(((2j+1)−1)ν+1)

−ν2p2

(for odd m),

(4.2)

for all m ∈ N0. Let ρ0 = min{ρ, δ}. Therefore each solution z : Iρ0 → C of the fractional Bessel’differential equation
(1.1) can be commented by

z(x) = zh(x) +
∞∑

m=0

cmxmν , (4.3)
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for all x ∈ Iρ0 , where Zh(x) is a solution of the equation (1.3).

Proof. Let z : Iρ0 → C is a function considered in the form (4.3) and zp(x) = z(x)− zh(x) =
∑∞

m=0 cmxmν . Next, we
evince that the function zp(x) is convenient for the inhomogeneous equation (1.1). From (4.2), we have:

x2νDνDνzp(x) + νxνDνzp(x) + ν2(x2ν − p2)zp(x) =
∞∑

m=2

Γ(mν + 1)

Γ((m− 2)ν + 1)
cmxmν

+
∞∑

m=1

ν
Γ(mν + 1)

Γ((m− 2)ν + 1)
cmxmν +

∞∑
m=0

cmν2x(m+2)ν −
∞∑

m=0

p2ν2cmxmν

=
∞∑

m=2

Γ(mν + 1)

Γ((m− 2)ν + 1)
cmxmν + (νc1Γ(ν + 1)xν +

∞∑
m=2

ν
Γ(mν + 1)

Γ((m− 1)ν + 1)
cmxmν)

+

∞∑
m=2

ν2cm−2x
mν + (−ν2p2c0 − ν2p2c1x

ν −
∞∑

m=2

ν2cmxmν) = a0 + a1x
ν +

∞∑
m=2

amxmν , (4.4)

since we obtain

c0 =
−1

p2ν2
a0, c1 =

1

νΓ(ν + 1)− p2ν2
a1,

and

(
Γ(mν + 1)

Γ((m− 2)ν + 1)
+

Γ(mν + 1)

Γ((m− 1)ν + 1)
− ν2p2)cm + ν2cm−2 = am, form ≥ 2,

from (4.1) and (4.2), we have:

lim
m→∞

|cm+2

cm
| = lim

m→∞

1
Γ((m+2)ν+1)

Γ(mν+1) + Γ((m+2)ν+1)
Γ((m+1)ν+1) − ν2p2

|am+2

cm
− ν2|

≤ lim
m→∞

1
Γ[(m+2)ν+1]Γ[(m+1)ν+1]+Γ[(m+2)ν+1]Γ[mν+1]−ν2p2Γ[mν+1]Γ[(m+1)ν+1]

Γ[mν+1]Γ[(m+1)ν+1]

|am+2

cm
− ν2| (4.5)

≤ lim
m→∞

Γ[mν + 1]Γ[(m+ 1)ν + 1](
Γ[(m+ 2)ν + 1]Γ[(m+ 1)ν + 1]
+Γ[(m+ 2)ν + 1]Γ[mν + 1]− ν2p2Γ[mν + 1]Γ[(m+ 1)ν + 1]

)
× Γ[(m+ 2)ν + 1]Γ[(m+ 1)ν + 1]

δ2Γ[(m+ 1)ν + 1]Γ(mν + 1)
=

1

δ2
.

We learnt from the above that the power series for zp(x) converges for all x ∈ Iρ0 , which evinces that zp(x) is a private
answer of the heterogeneous equation (1.1).

On the other part, since each solution to (1.1) will be explained as a sum of a solution zh(x) of the homogeneous
equation and a private answer zp(x) of the heterogeneous equation, each answer of (1.1) is sure of the form (4.3). �

5. Numerical method

In the present section, the fractional Bernoulli functions and its operational matrices are employed to obtain the
approximate solution of the following Rieman-Liouville the time-fractional Bessel equation of order p .
Consider the fractional Bessel equation of order p

x2νDνDνz(x) + νxνDνz(x) + ν2(x2ν − p2)z(x) =

∞∑
m=0

amxmν , (5.1)

with boundary conditions(Dirichlet conditions)

I1−νz(x)|x=0 = λ, I1−νz(x)|x=1 = ω, (5.2)
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where Dν denoted the Rieman-Liouville derivative and 0 < ν < 1, 0 < x ≤ 1, p is non integer number.
If ν = 1, then the equation is classical Bessel equation.
Our method relies on the approximation of Dνz(x) in manner of the fractional Bernoulli function as follows:

Dνz(x) ≃ DνzN (x) =
m∑
i=0

ciβ
α(x) = CTβα(x), (5.3)

where, vector C = [c0, c1, ..., cm]T is an unknown vector.
Applying the operational matrix of Rieman-Liouville integral (3.8), we have

z(x) ≃ zN (x) =
m∑
i=0

ciI
νβα

i (x) +
n∑

j=1

xn−j

Γ(ν − j + 1)
I(n−j)z(x)|x=0

= CTG(ν,α)βα(x) +
xν−1

Γ(ν)
I1−νz(x)|x=0 (5.4)

= CTG(ν,α)βα(x) +
λ

Γ(ν)
x1−ν

∼= CTG(ν,α)βα(x) + dTβα(x), (5.5)

where λ
Γ(ν)x

1−ν is estimated as dTβα(x). Using equations (3.4) and (5.3), and the feature of the Rieman-liouville

derivative, we obtain

DνDνz(x) ≃ DνDνzN (x) =
m∑
i=0

ciD
νβα

i (x)
∼= CTF (ν,α)βα(x). (5.6)

Similarly, there can be expanded x2ν and xν via the time-fractional Bernoulli functions as:

N1(x) = x2ν ≃
m∑
i=0

eiβ
α
i (x) ≃ ET

1 β
α(x), (5.7)

and

N2(x) = xν ≃
m∑
i=0

e
′

iβ
α
i (x) ≃ ET

2 β
α(x), (5.8)

where, E1 = [e0, ..., em]T , and E2 = [e
′

0, ..., e
′

m]T .
Thereupon, substituting equations (5.3)-(5.8) in equation (5.1), we get

N1(x)D
νDνzN (x) + νN2(x)D

νzN (x) + ν2N1(x)zN (x)− ν2p2zN (x)− f(x) = 0. (5.9)

By taking the least square approximate, we consider functional W [c0, c1, ..., cm] as follow

W [c0, ..., cm] =

∫ 1

0

N1(x)D
νDνzN (x) + νN2(x)D

νzN (x) + ν2N1(x)zN (x)− ν2p2zN (x)− f(x))2dx. (5.10)

Now, to minimize W [c0, c1, ..., cm], we obtain c0, c1, ..., cm by following:

∂W

∂ck
= 0, k = 0, 1, ...,m. (5.11)

The above equations yield m + 1 nonlinear equations with m + 1 unknown factors, Which requires to be solved by
employing suitable algorithm. By obtaining C, one can obtain the estimation value of z(x) in equation (5.4).
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6. On the convergence of the method

In this section, we argue on the convergence analysis of the mentioned scheme in previous section. To this aim, we
first will obtain an error upper bound for the operational matrices of the fractional derivative and integration. Then
it can be shown that by increasing the number of FBFs, the errors vanish. Now we need to go through subsequent
theorem.

Theorem 6.1. Let H is a Hilbert space and Z is a closed subspace of H such that dimZ < ∞ and z1, z2, ..., zn is
any basis for Z. Suppose that x be an arbitrary element in H and z0 be the unique best approximation to x out of Z.
Thereupon

∥x− z0∥2 = (
G(x, z1, z2, ..., zn)

G(z1, z2, ..., zn)
)

1
2 ,

where

G(x, z1, z2, ..., zn) =


< x, x > < x, z1 > . . . < x, zn >
< z1, x > < z1, z1 > . . . < z1, zn >

...
...

. . .
...

< zn, x > < zn, z1 > . . . < zn, zn >

 .

Proof. see [18]. �

Theorem 6.2. If E
(ν,α)
I and E

(ν,α)
D are the error vector of the operational matrix G(ν,α) and F (ν,α) respectively, then

E
(ν,α)
I = [e

(ν,α)
I0

, ..., e
(ν,α)
Im

]T = G(ν,α)βα − Iνβα,

and

E
(ν,α)
D = [e

(ν,α)
D0

, ..., e
(ν,α)
Dm

]T = F (ν,α)βα −Dνβα.

Proof. By approximation xαr+ν , we had

xαr+ν ≃
m∑
j=0

a
(ν,α)
(r,j) β

α
j (x),

where we can obtain a
(ν,α)
(r,j) by taking the best approximation. Therefore, from the above theorem (6.1), we have

∥xαr+ν −
m∑
j=0

a
(ν,α)
(r,j) β

α
j (x)∥22 =

G(xαr+ν , βα
0 , ..., β

α
m)

G(βα
0 , ..., β

α
m)

.

Hence, according to equations (3.8)-(3.11), we obtain

∥e(ν,α)Ii ∥2 = ∥I(ν,α)βα
i (x)−

m∑
j=0

(
i∑

r=0

∆
(ν,α)
(i,j,r))β

α
j (x)∥2

≤
i∑

r=0

(
i

r

)
(

Γ(αr + 1)

Γ(αr + 1 + ν)
)βα

i−r∥xαr+ν −
m∑
j=0

a
(ν,α)
(r,j) β

α
j (x)∥2

≤
i∑

r=0

(
i

r

)
(

Γ(αr + 1)

Γ(αr + 1 + ν)
)βα

i−r(
G(xαr+ν , βα

0 , ..., β
α
m)

G(βα
0 , ..., β

α
m)

)
1
2 , 0 ≤ i ≤ m.
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In the same way for E
(ν,α)
D , by using equation (3.6), we had

xαr−ν ≃
m∑
j=0

φ
(ν,α)
(r,j) β

α
j (x),

where we can obtain φ
(ν,α)
(r,j) by taking the best approximation. Hence according to the theorem (6.1), we have

∥xαr−ν −
m∑
j=0

φ
(ν,α)
(r,j) β

α
j (x)∥22 =

G(xαr−ν , βα
0 , ..., β

α
m)

G(βα
0 , ..., β

α
m)

.

By using equations (3.4)-(3.7), we have

∥e(ν,α)Di ∥2 = ∥D(ν,α)βα
i (x)−

m∑
j=0

(
i∑

r=0

Θ
(ν,α)
(i,j,r))β

α
j (x)∥2

≤
i∑

r=0

(
i

r

)
(

Γ(αr + 1)

Γ(αr + 1− ν)
)βα

i−r∥xαr−ν −
m∑
j=0

φ
(ν,α)
(r,j) β

α
j (x)∥2

≤
i∑

r=0

(
i

r

)
(

Γ(αr + 1)

Γ(αr + 1− ν)
)βα

i−r(
G(xαr−ν , βα

0 , ..., β
α
m)

G(βα
0 , ..., β

α
m)

)
1
2 , 0 ≤ i ≤ m.

�

Theorem 6.3. Assume Dkνz(x) ∈ C(0, 1], k = 0, 1, ...,m and
Zm = span{β0(x), ..., βm(x)}. If z(x) is approximated by qm(x) as

z(x) ≃ qm(x) =
m∑
i=0

ciβi
α(x) = CTβα(x),

where qm(x) is the best approximation out of Zm. Consider

Sm(z) =

∫ 1

0

[z(x)− qm(x)]2dx.

Therefore, we have

lim
m→∞

Sm(z) = 0.

Proof. We define

z∗(x) =
m∑
j=0

xjν

Γ(jν + 1)
Djν(0+).

From Definition (2.4), we get

|z(x)− z∗(x)| ≤ Mν
x(m+1)ν

Γ((m+ 1)ν + 1)
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where Mν ≥ supη∈(0,1]|D(m+1)νz(η)|. Since qm(x) is the best approximation of z(x) from Zm, z∗ ∈ Zm and from the
above relation we obtain

∥z(x)− qm(x)∥22 ≤ ∥z(x)− z∗(x)∥22 =

∫ 1

0

|z(x)− z∗(x)|2dx

≤
∫ 1

0

M2
ν

x(2m+2)ν

Γ((m+ 1)ν + 1)2
dx =

M2
ν

Γ((m+ 1)ν + 1)2

∫ 1

0

x(2m+2)νdx

=
M2

ν

Γ((m+ 1)ν + 1)2((2m+ 2)ν + 1)
.

So, we obtain

lim
m→∞

∥z(x)− qm(x)∥22 = 0.

�

By considering the above theorems, we consider that as the number of FBFs increases, the errors tend to vanish.
Now, the equation (5.10) can be written in the following form

W [zN ] =

∫ 1

0

(N1(x)D
νDνzN (x) + νN2(x)D

νzN (x) + ν2N1(x)zN (x)− ν2p2zN (x)− f(x))2dx. (6.1)

Evidently the set of the FBFs provide a basis for Banach space of C1[0, 1] with the uniform norm ∥f∥ = ∥f∥∞+∥f ′∥∞.
Take it to the consideration that Kn be an n-dimensional subspace of A = (C1[0, 1], ∥.∥) established by {β0, ..., βn}.
Therefore each element of Kn is in the form µ0βo + µ1β1 + ...+ µnβn, where µ0, ..., µn are real constants and on each
set Kn the functional W ends up to a function W [µ0βo+µ1β1+ ...+µnβn] of variables µ0, ..., µn. We choose µ0, ..., µn

to lessen W , we indicate the minimum of W by ηn , and the element of Kn which prepare the least amount by yn.
Obviously

Kn ⊂ Kn+1,

therefore, we obtain

ηm ≥ ηm+1.

From the above argue, we can deduce as following .

Theorem 6.4. Observe the functional W , therefore [21]

lim
m→∞

ηn = η,

where

η = infz∈AW [z].

It is considered that ηm is the optimal value of the W on the set Km. Also for each of z(x) in Km, we get

z(x) = z0β
α
0 + ...+ zmβα

m = ZTβα(x),

therefore we obtain

Dνz(x) = Dν(ZTβα(x)) = ZTDνβα(x) = ZT .F (ν,α).βα(x) + ZT .E
(ν,α)
D . (6.2)

By taking ZTF (ν,α) as CT , we obtain

z(x) = CT .G(ν,α).βα(x) + CT .E
(ν,α)
I + Z0I

νE
(ν,α)
D + dTβα(x), (6.3)
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Figure 1. The comparison of z(x) for m = 5 , α = ν = 0.25, 0.40, 0.75, and the exact solution for Example7.1.

also, we have

DνDνz(x) = Dν(ZT .F (ν,α).βα + ZT .E
(ν,α)
D ).

Assume ZTF (ν,α) = CT , then we obtain

DνDνz(x) = CT .F (ν,α).βα(x) + ZTDνE
(ν,α)
D + CT .E

(ν,α)
D . (6.4)

We obtained the approximated form of problem (5.1)on λm by taking the operational matrices as follow

W =

∫ 1

0

[(dT1 β
α(x))(CT .F (ν,α).βα(x) + ZTDνE

(ν,α)
D + CT .E

(ν,α)
D )

+ ν(dT2 β
α(x))(ZT .F (ν,α).βα(x) + ZT .E

(ν,α)
D ) + ν2((dT1 β

α(x))− p2)

× (CT .G(ν,α).βα(x) + CT .E
(ν,α)
I + Z0.I

ν .E
(ν,α)
D + dTβα(x))]2dx.

Theorem(6.2) ensure that as m → ∞, thereupon E
(ν,α)
D , E

(ν,α)
I , tend to vanish. So, if zm(x) is a solution to (5.1),

thereupon we have zm(x) → z(x) as m → ∞. From theorem (6.4), we had

lim
m→∞

ηm = η,

where

η = infz∈AW [z].

Table 1. comparison of the approximate solutions for ν = α = 0.25, 0.75, and different of m, for
problem 7.1.

α = ν = 0.25 α = ν = 0.75

x m = 5 m = 7 m = 5 m = 7

0.1 0.0120820 0.0124998 0.0103574 0.00958479
0.3 0.0861657 0.0896002 0.0905577 0.09246760
0.5 0.247876 0.2453460 0.2510070 0.25232600
0.7 0.4896930 0.4866100 0.4916030 0.49334200
0.9 0.8027460 0.8070520 0.8122810 0.81368400
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Table 2. comparison of the approximate solutions for ν = α = 1/2, and different of m, for problem 7.1.

x exact solution m=5 m=7

0.1 0.01 0.0100129 0.0101009
0.3 0.09 0.0900084 0.0905181
0.5 0.25 0.2500070 0.2501570
0.7 0.49 0.4900080 0.4901320
0.9 0.81 0.8100060 0.8105220

Table 3. The absolute errors with some m and different values of ν for problem 7.1.

m = 5 m = 7

ν α = 1 α = ν α = 1 α = ν

0.25 1.28e−5 2.01e−5 5.53e−4 1.13e−5

0.40 6.05e−6 7.08e−6 1.91e−4 3.58e−5

0.50 1.52e−7 7.37e−11 3.81e−7 2.72e−5

0.75 5.15e−6 1.90e−6 1.13e−2 7.58e−6

Table 4. The absolute errors for ν = 1/2, with m = 5, and various of α for problem 7.1.

x α = .25 α = .50 α = .75 α = 1 α = 1.5

0.1 2.04e−3 1.28e−5 2.31e−5 5.86e−4 6.04e−3

0.3 2.96e−3 8.38e−6 7.12e−6 3.54e−4 4.21e−3

0.5 1.20e−4 7.40e−6 1.74e−6 3.64e−4 3.47e−3

0.7 3.73e−3 8.08e−6 1.84e−5 3.68e−4 3.52e−3

0.9 1.01e−3 6.27e−6 1.35e−5 1.92e−4 2.92e−3

Figure 2. The comparison of z(x) for m = 7 ,α = ν = 0.25, 0.40, 0.60, 0.75, and the exact solution for Example7.2.

7. Numerical examples

Evidently it is crucial to gather data in research, such data meant to provide an easier understanding of a proposed
method. Three examples of the FBFs are chosen in terms of the study purpose with the assumptions that every one
of them would prepare rich information of value to the study as well as the efficiency of the proposed FBFs approach
in section 5 .
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Table 5. comparison of the approximate solutions for ν = α = 0.25, 0.40, and various of m, for
problem 7.2.

α = ν = 0.25 α = ν = 0.40

x m = 5 m = 7 m = 5 m = 7

0.1 0.0265149 0.0121692 0.0109748 0.0261518
0.3 0.1009140 0.1159200 0.1169260 0.1296830
0.5 0.3620220 0.3680210 0.3725030 0.3838700
0.7 0.8349210 0.8197870 0.8350140 0.8440880
0.9 1.5092600 1.5118200 1.5443400 1.5525900

Table 6. comparison of the approximate solutions for ν = α = 1/2, and various of m, for problem 7.2.

x exact solution m=5 m=7

0.1 0.011 0.0106818 0.0181927
0.3 0.117 0.1171430 0.1249840
0.5 0.375 0.3743390 0.3815600
0.7 0.833 0.8323520 0.8387270
0.9 1.539 1.5380400 1.5453500

Table 7. The absolute errors with some m and different values of ν for problem 7.2.

m = 5 m = 7

ν α = 1 α = ν α = 1 α = ν

0.25 2.22e−4 4.50e−4 2.93e−4 2.17e−4

0.40 8.60e−6 7.51e−6 7.96e−2 1.73e−4

0.50 1.25e−6 5.32e−7 2.99e−7 4.75e−5

0.60 5.93e−4 6.60e−4 1.95e−2 1.68e−3

0.75 3.19e−6 6.80e−6 1.13e−2 7.62e−3

Table 8. The absolute for ν = 1/2, with m = 7, and different of α for problem 7.2.

x α = .25 α = .50 α = 1 α = 2

0.1 8.45e−3 7.19e−3 8.21e−4 5.51e−4

0.3 6.17e−3 7.98e−3 6.20e−4 4.91e−4

0.5 6.24e−3 6.56e−3 3.84e−4 8.00e−4

0.7 5.41e−3 5.72e−3 5.43e−6 2.43e−4

0.9 8.19e−3 6.35e−3 5.99e−4 9.64e−4

Example 7.1. Firstly, consider the fractional Bessel equation

x2νDνDνz(x) + νxνDνz(x) + ν2x2νz(x) = (2 +
4

3
√
π
)x2 +

1

4
x3, (7.1)

with boundary condition

I1−νz(x)|x=0,1 = 0.

For problem (7.1), the real answer is z(x) = x2 for ν = 0.5.
Figure 1 shows the numerical results of problem (7.1) for m = 5, α = ν = 0.25, 0.40, 0.50, 0.75 and the exact solution.
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Figure 3. The comparison of z(x) for m = 5, α = 0.25, 0.40, 0.60, 0.75, 1, and the exact solution for
Example 7.3.

Table 9. Comparison of The absolute errors for different values of α for problem 7.3.

m = 5 m = 7

x α = 0.25 α = 0.5 α = 1 α = 0.25 α = 0.5 α = 1

0.1 1.91e−3 2.85e−5 1.78e−3 4.54e−3 3.63e−4 1.02e−3

0.3 2.12e−3 3.56e−4 1.92e−3 2.83e−3 6.51e−4 3.32e−4

0.5 1.64e−3 2.08e−3 7.08e−4 2.78e−3 1.69e−3 1.30e−3

0.7 9.21e−3 5.94e−3 4.86e−3 7.93e−3 5.61e−3 5.27e−3

0.9 1.31e−2 1.24e−2 1.04e−2 1.54e−2 1.14e−2 1.15e−2

We see that the approximate solutions are in high agreement with the accurate solution, when ν = 1/2. Therefore,
we state the solution for ν = 0.25 and ν = 0.75 is also credible. Table 1 illustrate the values of the solutions for
α = ν = 0.25 and shows them for α = ν = 0.75 and table2 gives the values of the solutions for α = ν = 0.5. Also,
the approximate solutions for α = ν = 0.5 are compared with the exact solution in Table 2. We know that the exact
solution for the values of ν ̸= 0.5 are unknown. Therefore to illustrate the present scheme for this problem, we use
estimated error in section 6. Table 3, displays graph of error for some m and different values of ν. These tables and
figures demonstrate the advantage and the accuracy of the FBFs for solving the time-fractional Bessel differential
equation. Also, Table 4 demonstrates the effect of parameter α for this problem. From above tables and figures, it
could be claimed that the best cases of α for problem (7.1) is α = ν .

Example7.2. Consider the fractional Bessel equation as follow

x2νDνDνz(x) + νxνDνz(x) + ν2(x2ν − 1)z(x) = 0.25x4 + 3.9x3 + 2.5x2, (7.2)

with boundary condition

I1−νz(x)|x=0,1 = 0.

For problem (7.2), the exact solution is z(x) = x3 + x2 for ν = 0.5 .
Figure 2 depicts the graph of the real solution and the approximate results of problem (7.2) for m = 7, α = ν =
0.25, 0.40, 0.50, 0.60, 0.75 . It could be claimed that the approximate solutions are in high agreement with the exact so-
lution, when ν = 1/2. Therefore, we state the solution for ν = 0.25 and ν = 0.75 is also credible. Table 5 demonstrates
the values of the solutions for α = ν = 0.25 and shows them for α = ν = 0.75 and table 6 gives the values of the solu-
tions for α = ν = 0.5. Also, the approximate solutions for α = ν = 0.5 are compared with the exact solution in table6.
We know that the exact solution for the values of ν ̸= 0.5 are unknown. Therefore to show efficient of the present
scheme for problem (7.2), we use estimated error in section 6. Table 7, displays graph of error for some m and copious
values of ν. These tables and figures demonstrate the advantage and the accuracy of the time-fractional Bernoulli
functions for solving the fractional Bessel differential equation. Also, Table 8 display the effect of parameter α for
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this problem. From above tables and figures, it is convenient to say that the best cases of α for problem (7.2) is α = ν .

Example 7.3. Consider the fractional Bessel equation

xD0.5D0.5z(x) + 0.5x0.5D0.5z(x) + 0.25xz(x) = 1.565x+ .25x2 − .725x3

−.042x4 + 0.057x5 + 0.002x6 − 0.0018x7 − 0.00004x8, (7.3)

with boundary condition

I1−νz(x)|x=0,1 = 0.

The real solution of problem (7.3) is z(x) = Sin(x) for p = 0.
In Table 9, the absolute error between the real and numerical solutions for different of α and various m is exposed.
The comparison shows that the best sense of α for this problem is α = 0.5 and it is observed that the errors decline
when m increase.
Figure3 demonstrates the exact solution and the numerical results of problem (7.3) form = 5, α = 0.25, 0.40, 0.60, 0.75, 1.
The comparison shows that the numerical solutions tend to z(x) = Sin(x), when α = ν → 1/2.

8. Conclusion

This paper attempted to obtain numerical solutions to the FBFs. The FBFs are taken to be an eminent factor in
mathematics, physics, and engineering, which are usually not straightforward to be solved analytically. They require
the application of techniques. Simply put, in this article, the researcher has decided to regard convenient mechanization
of the time-fractional Bernoulli function and least square method as being an appropriate and applicable proposed
method to solve Bessel equations. That is to say, this method transforms the under study problem into a nonlinear
algebraic system. Through the study, one can pinpoint that the solution of the resulting system is used to compute
unknown Bernoulli coefficients of the solution functions. This can able the researcher to draw inferences about the
suggested approach. Last but not least, it has been described more clearly that the proposed method must be consistent
with the Bessel equations. One should bear in mind that, using the suggested scheme, it does seem quite justified to
expect achieved solutions to illustrate the best case of α for this problem, that is α = ν. The results obtained from
the given examples also happen to determine the ability, reliability, and trustworthiness of the present method.
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