- [1] A. Akbulut, F. Ta¸scan, and M. Ghahremani, On symmetries, conservation laws and exact solutions of the non- linear Schr¨odinger–Hirota equation, Waves in Random and Complex Media, 28(2) (2017), 389–398.
- [2] M. N. Alam and C. Tun¸c, Constructions of the optical solitons and others soliton to the conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity, Journal of Taibah University for Science, 14(1) (2020), 94—100.
- [3] M. N. Alam and C. Tun¸c, New solitary wave structures to the (2+1)-dimensional KD and KP equations with spatio-temporal dispersion, Journal of King Saud University Science, 32 (2020), 3400—3409.
- [4] M. N. Alam and C. Tun¸c, The new solitary wave structures for the (2+1)-dimensional time-fractional Schrodinger equation and the space-time nonlinear conformable fractional Bogoyavlenskii equations, Alexandria Engineering Journal, 59 (2020), 2221—2232.
- [5] H. A. Ali, Application of He’s Exp-function method and semi-inverse variational principle to equal width wave (EW) and modified equal width wave (MEW) equations, International Journal of the Physical Sciences, 7 (2012), Doi: 10.5897/IJPS11.1755.
- [6] A. Bekir, M. S. M. Shehata, and E. H. M. Zahran, New optical soliton solutions for the thin-film ferroelectric materials equation instead of the numerical solution, Computational Methods for Differential Equations, (2021), Doi: 10.22034/CMDE.2020.38121.1677.
- [7] J. Biazar and Z. ayati , Application of Exp-function method to EW Burgers equation, Numer. Meth. for Part. Diff. Eq., 26(6) (2010), 1476–1482.
- [8] J.Biazar, E. Babolian, A. Nouri, and R. Islam, An alternate algorithm for computing Adomian Decomposition method in special cases, App. Math. and Comput., 38(2-3) (2003), 523–529.
- [9] Ebaid, Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method, Phys.Lett. A, 365 (2007), 213—219.
- [10] S. A. El-Wakil, Application of Exp-function method for nonlinear evolution equations with variable coefficients, Phy. Lett. A, 369(1-2) (2007), 62–69.
- [11] J. H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos Solitons Fractals, 26 (2005), 695—700.
- [12] J. H. He and X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals,30 (2006), 700—708.
- [13] J. H. He, Variational iteration method—a kind of non-linear analytical technique: some examples, Int. J. Nonlinear Mech., 34 (1999), 699—708.
- [14] J. H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput. 114 (2000), 115—123.
- [15] M. Ilie, J. Biazar, and Z. Ayati, Resonant solitons to the nonlinear Schr¨odinger equation with different forms of nonlinearities, Optik, 164 (2018), 201–209.
- [16] R. Islam, K. Khan, M. A. Akbar, Md. Ekramul Islam, and Md. Tanjir Ahmed, Traveling wave solutions of some nonlinear evolution equations, Alexandria Engineering Journal, 54(2) (2015), 263–269.
- [17] Sh. Islam, Md. Nur Alam , Md. Fayz Al-Asad, and C. Tun¸c, An analytical technique for solving new computational of the modified Zakharov- Kuznetsov equation arising in electrical engineering, J. Appl. Comput. Mech, 7(2) (2021), 715–726.
- [18] A. J. M. Jawad, M. D. Petkovic, and A. Biswas, Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 869—877.
- [19] S. B. Karakoc and K. Karam Ali, New exact solutions and numerical approximations of the generalized KdV equation, Computational Methods for Differential Equations, 9(3) (2021), 670–691.
- [20] K. Khan and M. Ali Akbar, Exact solutions of the (2+1)-dimensional cubic Klein–Gordon equation and the (3+1)- dimensional Zakharov–Kuznetsov equation using the modified simple equation method, Journal of the Association of Arab Universities for Basic and Applied Sciences, 15(1) (2013).
- [21] K. khan and M. Ali Akbar, Exact and solitary wave solutions for the Tzitzeica-Dodd-Bullough and the modified Kdv-Zakharov-Kuznetsov equations using the modified simple equation method, Ain Shams Engineering Journal, 4(4) (2013), 903–909.
- [22] N. A. Kudryashov and N. B. Loguinova, Extended simplest equation method for nonlinear differential equations, App. Math. Comput., 205 (2008), 396—402.
- [23] M. Lakestani, J. Manafian, A. R. Najafizadeh, and M. Partohaghighi, Some new soliton solutions for the nonlinear the fifth-order integrable equations, Computational Methods for Differential Equations, (2021), In press. Doi: 10.22034/CMDE.2020.30833.1462.
- [24] W. Malfliet and w. Hereman, The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54 (1996), 563—8.
- [25] S. N. Neossi Nguetchue, Axisymmetric spreading of a thin power-law fluid under gravity on a horizontal plane, Nonlinear Dynamics, 52(4) (2008), 361–366.
- [26] N. Taghizadeh, M. Mirzazadeh, A. Samiei Paghaleh, and J. Vahidi, Exact solutions of nonlinear evolution equa- tions by using the modified simple equation method, Ain Shams Engineering Journal, 3 (2012), 321—325.
- [27] K. Vitanov Nikolay, Modified method of simplest equation:powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs, Commun. Nonlinear Sci. Numer. Simulat., 16(2011), 1176—85.
- [28] K. Wang and G. Wang. Variational principle, solitary and periodic wave solutions of the fractal modified equal width equation in plasma physics, Fractals, 29(05) (2021).
- [29] A. M. Wazwaz, The tanh method: Exact solutions of the Sine–Gordon and Sinh– Gordon equations, Appl. Math. Comput., 167 (2005), 1196—1210.
- [30] M. E. Zayed Elsayed and A. Amer Yasser, ”Exact solutions for the nonlinear KPP equation by using the Riccati equation method combined with the G/G - expansion method, Scientific Research and Essays, 10(3) (2015), 86-96.
- [31] E. M. E. Zayed, A note on the modified simple equation method applied to Sharma–Tasso–Olver equation, Appl. Math. Comput., 218 (2011), 3962—3964.
- [32] E. M. E. Zayed and S. A. H. Ibrahim, Exact solutions of nonlinear evolution equations in mathematical physics using the modified simple equation method, Chinese Phys. Lett., 29(6) (2012).
- [33] M. E. Zayed Elsayed and A.-Gh. Al-Nowehy, Solitons and other exact solutions for variant nonlinear Boussinesq equations, Optik - International Journal for Light and Electron Optics, 139 (2017), 166–177.
- [34] E. M. E. Zayed, The modified simple equation method for two nonlinear PDEs with power law and Kerr law nonlinearity, Pan Amer. Math. Journal, International Publications, USA, 24(1) (2014), 65—74.
- [35] E. M. E. Zayed, The modified simple equation method applied to nonlinear two models of diffusion-reaction equations, Jour. of Math. Research and Applicat., 2(2) (2014), 5–13.
- [36] S. Zhang, Application of Exp-function method to a KdV equation with variable coefficients, Phys. Lett. A, 365 (2007), 448—453.
- [37] S. D. Zhu, Exp-function method for the discrete mKdV lattice, Int. J. Nonlinear Sci. Numer. Simul., 8 (2007), 465—469.
|