- [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.
- [2] M. A. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos Solitons Fractals, 31 (2007), 95-104 .
- [3] G. Adomian. Solving frontier problems of physics: The decomposition method. Kluwer Academic Publishers, Boston 1994.
- [4] H. Ahmad, M. N. Alam, and M. Omri, New computational results for a prototype of an excitable system, Results in Physics, Volume 28 2021, 104666.
- [5] M. N. Alam and C.Tunc, Constructions of the optical solitons and other solitons to the conformable fractional Zakharov–Kuznetsov equation with power law nonlinearity, Journal of Taibah University for Science, 14(1) (2020), 94-100.
- [6] M. N. Alam and X. Li, Symbolic methods to construct a cusp, breathers, kink, rogue waves and some soliton waves solutions of nonlinear partial differential equations, Computational Methods for Differential Equations, 8(3) (2020), 597-609.
- [7] M. N. Alam and X. Li, Exact traveling wave solutions to higher order nonlinear equations, Journal of Ocean Engineering and Science, 4(3) (2019), 276-288.
- [8] M. N. Alam, Exact solutions to the foam drainage equation by using the new generalized (G//G)-expansion method, Results in Physics, 5 (2015), 168-177.
- [9] M. N. Alam and M. Ali Akbar, The new approach of the generalized (G//G)-expansion method for nonlinear evolution equations, Ain Shams Engineering Journal, 5(2) (2014), 595-603.
- [10] M. N. Alam, A. Akbar, and S. T. Mohyud-Din, A novel (G//G)-expansion method and its application to the Boussinesq equation, Chinese Phys. B., 23 (2013), 020203.
- [11] M. N. Alam and C. Tunc, Soliton solutions to the LWME in a MEECR and DSWE of soliton and multiple soliton solutions to the longitudinal wave motion equation in a magneto-electro elastic circular rod and the Drin- feld–Sokolov–Wilson equation, Miskolc Math. Notes, 21(2) (2020), 545-561.
- [12] M. N. Alam and C. Tunc, New solitary wave structures to the (2 + 1)-dimensional KD and KP equations with spatio-temporal dispersion, Journal of King Saud University – Science, 32(8) (2020), 3400-3409.
- [13] M. N. Alam, I. Talib, O. Bazighifan, D. N. Chalishajar, and B. Almarri, An Analytical Technique Implemented in the Fractional Clannish Random Walker’s Parabolic Equation with Nonlinear Physical Phenomena, Mathematics., 9(8) (2021), 801.
- [14] M. N. Alam, E. Bonyah, M. F. A. Asad, M. S. Osman, and K. M. Abualnaja, Stable and functional solutions of the Klein-Fock-Gordon equation with nonlinear physical phenomena, Phys. Scr., 96 (2021), 055207.
- [15] A. Ali, M. A. Iqbal, Q. M. Ul-Hassan, J. Ahmad, and S. T. Mohyud-Din, An efficient technique for higher order fractional differential equation, Springer Plus, 5 (2016), 281.
- [16] H. Aminikhad, H. Moosaei, and M. Hajipour, Exact solutions for nonlinear partial differential equations via Exp-function method, Numer. Methods Partial Differential Equations, 26 (2009), 1427-1433.
- [17] A. Biswas, Y. Yildirim, E. Yasar ,Q. Zhou, S. P. Moshokoa, and M. Belic, Optical soliton perturbation with resonant nonlinear schr¨odinger’s equation having full nonlinearity by modified simple equation method, Optik, 160 (2018), 33-43.
- [18] A. Biswas, H. Triki, Q. Zhou, S. P. Moshokoa, M. Z. Ullah, and M. Belic, Cubic-quartic optical solitons in Kerr and power law media, Optik, 144 (2017), 357-362.
- [19] H. Bulut, T. A.Sulaiman, H. M. Baskonus, and T. Aktu¨rk, On the bright and singular optical solitons to the (2+ 1)-dimensional NLS and the Hirota equations, Optic Quantum Electron, 50 (2018), 134.
- [20] Y. Chatibi, E. H. E. Kinani, and A. Ouhadan, Lie symmetry analysis of conformable differential equations. AIMS Mathematics, 4(4) (2019), 1133-1144.
- [21] Y. Chatibi, E. H. E. Kinani, and A. Ouhadan, On the discrete symmetry analysis of some classical and fractional differential equations, Mathematical Methods in the Applied Sciences, (2019), 1-11.
- [22] Y. Chatibi, E. H. E. Kinani, and A. Ouhadan, Lie symmetry analysis and conservation laws for the time fractional Black-Scholes equation, International Journal of Geometric Methods in Modern Physics, 17(01) (2020), 2050010.
- [23] C. Q. Dai and J. F. Zhang, Jacobian elliptic function method for nonlinear differential difference equations, Chaos Solutions Fractals, 27 (2006), 1042-1049.
- [24] H. Dutta, H. Gu¨nerhan, K. K. Ali, and R. Yilmazer, Exact Soliton Solutions to the Cubic-Quartic Non-linear Schr¨odinger Equation With Conformable Derivative. Front. Phys., 8 (2020), 62.
- [25] E. Fan and J. Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A, 305 (2002), 383-392.
- [26] Z. Feng, On explicit exact solutions to the compound Burgers KdV equation, Phys Lett A, 293 (2002), 57-66.
- [27] W. Gao, H. F. Ismael, A. M. Husien, H. Bulut, and H. M. Baskonus, Optical Soliton Solutions of the Cubic- Quartic Nonlinear Schr¨odinger and Resonant Nonlinear Schr¨odinger Equation with the Parabolic Law, Appl. Sci., 10 (2020), 219.
- [28] W. Gao, H. F. Ismael, A. M. Husien, H. Bulut, and H. M. Baskonus, Optical Soliton Solutions of the Cubic- Quartic Nonlinear Schr¨odinger and Resonant Nonlinear Schr¨odinger Equation with the Parabolic Law, Appl. Sci., 10 (2020), 219.
- [29] M. G. Hafez, Md. Nur Alam, and M. Ali Akbar, Exact traveling wave solutions to the Klein–Gordon equation using the novel (G//G)-expansion method, Results in Physics, 4 (2014), 177-184.
- [30] J. H. He and X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006), 700-708.
- [31] K. Hosseini, F. Samadani, D. Kumar, and M. Faridi, New optical solitons of cubic-quartic nonlinear Schr¨odinger equation, Optik, 157 (2018), 1101-1105.
- [32] A. Irshad, N. Ahmed, U.Khan ,S. T. Mohyud-Din, I. Khan, and S. M. E. Sherif, Optical Solutions of Schr¨odinger Equation Using Extended Sinh–Gordon Equation Expansion Method, Front. Phys., 8 (2020), 73.
- [33] A. J. M . Jawad, M. D. Petkovic, and A. Biswas, Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 869-877.
- [34] R. Khalil, M. Al. Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.
- [35] A. E. Mahmoud, E. H. M. Z. Abdelrahman, and M. M. Khater, Exact traveling wave solutions for power law and kerr law non linearity using the exp(φ( ξ)))-expansion method, Global Journal of Science Frontier Research: F Mathematics and Decision Sciences, (2014), 14.
- [36] T. Mathanaranjan and K. Himalini, Analytical solutions of the time-fractional non-linear Schrodinger equation with zero and non zero trapping potential through the Sumudu Decomposition method, J Sci Univ Kelaniya, 12 (2019), 21-33.
- [37] T. Mathanaranjan and D. Vijayakumar, Laplace Decomposition Method for Time-Fractional Fornberg-Whitham Type Equations, Journal of Applied Mathematics and Physics, 9 (2021), 260-271.
- [38] T. Mathanaranjan, Soliton Solutions of Deformed Nonlinear Schr¨odinger Equations Using Ansatz Method, Int. J. Appl. Comput. Math, 7 (2021), 159.
- [39] T. Mathanaranjan, Solitary wave solutions of the Camassa-Holm-Nonlinear Schr¨odinger Equation, Results in Physics, 19 (2020), 103549.
- [40] T. Mathanaranjan, Optical singular and dark solitons to the (2 + 1)-dimensional times- pace fractional nonlinear Schrdinger equation, Results in Physics, 22 (2021), 103870.
- [41] T. Mathanaranjan, Exact and explicit traveling wave solutions to the generalized Gardner and BBMB equations with dual high-order nonlinear terms, Partial Differential Equations in Applied Mathematics, 4 (2021), 100120.
- [42] M. Mirzazadeh, Soliton solutions of Davey–Stewartson equation by trial equation method and ansatz approach, Nonlinear Dyn., 82(4) (2015), 1775-1780.
- [43] R. Sassaman and A. Biswas, Topological and non-topological solitons of the Klein–Gordon equations in 1+ 2 dimensions, Nonlinear Dyn., 61(1–2) (2010), 23-28.
- [44] K. U.Tariq and A. R. Seadawy, Optical soliton solutions of higher order nonlinear Schr¨odinger equation in monomode fibers and its applications, Optik, 154 (2018), 785-98.
- [45] A. M.Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Modelling, 40 (2004), 499-508.
- [46] A. M. Wazwaz, The tanh method for traveling wave solutions of nonlinear equations, Appl. Math. Comput., 154 (2004), 714-723.
- [47] A. M. Wazwaz, Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE. method, Comput. Math. Appl., 50 (2005), 1685-1696.
- [48] E. H. M. Zahran, Exact traveling wave solution for nonlinear fractional partial differential equation arising in soliton using the exp(φ( ξ)))-expansion method, Int. J. Comput. Appl., 109(13) (2015), 12-17.
- [49] E. M. E. Zayed Alzahrani and M. R. Belic, Cubic-quartic optical solitons and conservation laws with kudryashovs sextic power-law of refractive index, Optik, 227 (2021), 166059.
- [50] E. M. E. Zayed, M. E. M. Alngar, A. Biswas, Y. Yıldırım, P. Guggilla, S. Khan, A. K. Alzahrani, and M. R. Belic, Cubic–quartic optical soliton perturbation with lakshmanan–porsezian– daniel model, Optik, 233 (2021), 166385.
- [51] E. M. E. Zayed, M. E. M. Alngar, A. Biswas, Y. Yıldırım, S. Khan, A. K. Alzahrani, and M. R. Belic, Cubic–quartic optical soliton perturbation in polarization-preserving fibers with fokas–lenells equation, Optik, 234 (2021), 166543.
- [52] E. M. E. Zayed, R. M. A. Shohib, K. A. Gepreel, M. M. El-Horbaty, and M. E. M. Alngar, Cubic-quartic optical soliton perturbation biswas-milovic equation with kudryashovs law of refractive index using two integration methods, Optik, 239 (2021), 166871.
- [53] E. M. E. Zayed, R. M. A. Shohib, and M. E. M. Alngar, Cubic–quartic nonlinear Schr¨odinger equation in birefringent fibers with the presence of perturbation terms, Waves in Random and Complex Media, (2020).
- [54] E. M. E. Zayed, M.El-Horbaty, and M. E. M. Alngar, Cubic-quartic optical soliton perturbation having four laws non-linearity with a prolific integration algorithm, Optik, 220 (2020), 165121.
- [55] E. M. E. Zayed and A. G. Al-Nowehy, Solitons and other exact solutions for a class of nonlinear Schr¨odinger-type equations, Optik, 130 (2017), 1295-1311.
- [56] E. M. E. Zayed and S. A. Hoda Ibrahim, Exact solutions of nonlinear evolution equation in mathematical physics using the modified simple equation method, Chin. Phys. Lett., 29 (2012), 060201-4.
- [57] X. Zeng and X. Yong, A new mapping method and its applications to nonlinear partial differential equations, Phys. Lett. A, 372 (2008), 6602-6607.
- [58] J. L. Zhang, M. L. Wang, Y. M. Wang, and Z. D. Fang, The improved F-expansion method and its applications, Phys.Lett.A, 350 (2006), 103-109.
|