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An effective technique for the conformable space-time fractional cubic-quartic nonlinear
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Abstract

In the present study, we investigate the conformable space-time fractional cubic-quartic nonlinear Schrödinger

equation with three different laws of nonlinearity namely, parabolic law, quadratic-cubic law, and weak non-local
law. This model governs the propagation of solitons through nonlinear optical fibers. An effective approach

namely, the exp(−Φ(ξ))-expansion method is applied to construct some new soliton solutions of the governing

model. Consequently, the dark, singular, rational and periodic solitary wave solutions are successfully revealed.
The comparisons with other results are also presented. In addition, the dynamical structures of obtained solutions

are presented through 3D and 2D plots.
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1. Introduction

In recent years, many studies have been performed to investigate the non-linear Schrödinger equation (NLS) in
optical fibers to understand the dynamical behavior of optical soliton [17, 19, 28, 32, 44]. For example, consider the
cubic-quartic nonlinear Schrödinger equation (CQ-NLSE) of the form, as follows [27, 31]

iut + iβuxxx − γuxxxx + F (|u|2)u = 0, (1.1)

where u = u(x, t) is a complex-valued wave profile of time and space. The first term is temporal evolution while β
and γ are the coefficients of third order dispersion (3OD) and fourth order dispersion (4OD) respectively. The source
of nonlinearity F (|u|2) : C → C is a k-times continuously differentiable real-valued algebraic function, so that:

F (|u|2) ∈
∞⋃

m,n=1

ck((−n, n)× (−m,m) : R2).

Dispersion and nonlinearity are extremely important for the propagation of solitons in nonlinear media. Generally,
group velocity dispersion (GVD) leveling with self-phase modulation in a sensitive way allows such solitons to main-
tain long-distance travel. However, it could occur that GVD is very small and therefore completely ignored, so in
this condition, the dispersion impact is rewarded by 3OD and 4OD dispersion impacts. This is generally referred to
as solitons that are cubic-quartic (CQ). This model governs the dynamics of pulse transfer through optical fibers and
other forms of waveguides. There are many effective techniques have been applied to study the dynamics of optical
soliton propagation [18, 49–54].
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In recent years, the studies of physical models with fractional derivatives have attracted a great attention since
some materials are well described in fractal media. Consider the space-time fractional CQ-NLSE of the form

iDα
t u+ βD3α

x u− γD4α
x u+ F (|u|2)u = 0, (1.2)

where the operator Dα of order α ∈ (0, 1] is the conformable fractional derivative. Recently, Eq. (1.2) with parabolic
law nonlinearity was studied in [24] to find the exact soliton solutions and the other solutions.

Finding the exact solutions to nonlinear PDEs play an important role in many phenomena in Mathematical physics.
In recent years, many new approaches for finding these exact and analytical solutions have been proposed, for example,
the sine - cosine method [45, 47], the tanh - coth method [40, 46], the Jacobi elliptic function method [23, 25], the
first integral method [26, 41], the F-expansion method [2, 58], the exp-function method [16, 30], the (G′/G) expansion
method [4, 7–9, 14], the novel (G′/G) expansion method [5, 10–13, 29], the new mapping method [55, 57], the mod-
ified simple equation method [33, 39, 56], the solitary wave ansatz method [38, 42, 43], the Decomposition method
[3, 36, 37], the exp(−Φ(ξ))-expansion method [6, 15, 35, 48], the Lie symmetry analysis [20–22], and so on.

The main objective of this study is to obtain the exact soliton solutions to the Eq. (1.2) having three different
laws of nonlinearity namely, parabolic law, quadratic-cubic law, and weak non-local law by using an effective approach
called, the exp(−Φ(ξ))-expansion method. This method is a powerful tool for finding the exact solutions of nonlinear
differential equations, and gained considerable attention in recent years. To our best of knowledge, Eq. (1.2) having
different laws of nonlinearity is not investigated in the literature by using the proposed method.

This manuscript is organized as follows: The Basic definition and properties of the conformable fractional derivative
are presented in the next section. In section 3, we give brief descriptions of the exp(−Φ(ξ))-expansion method. In
section 4, we express the mathematical analysis of Eq. (1.2). In sections 5, the proposed method is applied to solve
the Eq. (1.2) for three different laws of nonlinearity. The graphical representations are given in the section 6. Finally,
the conclusion of our study is presented in section 7.

2. Conformable Fractional Derivative

A new form of conformable fractional derivative was introduced by Khalil et al.[34]. This new definition of fractional
calculus is based on a limit operator which is more natural and effective in satisfying some conventional properties
than the existing fractional derivatives. Consider the following basic definition and properties on the conformable
derivatives of order α [34]:

Definition 1. Let f : (0,∞)→ R, then the conformable fractional derivative of f of order α is defined as

Dα
t f (t) = lim

ε→0

f
(
t+ εt1−α

)
− f (t)

ε
, (2.1)

for all t > 0, α ∈ (0, 1).

Note that if the conformable fractional derivative of f of order α exists, then f is α - differentiable.

The most important properties of the conformable fractional derivative are given as the following theorems:

Theorem 1. Let g and f be α-conformable differentiable at t > 0, then:

(1) Dα
t (af + bg) = aDα

t f + bDα
t g, for all a, b ∈ R.

(2) Dα
t (tµ) = µtµ−α, for all µ ∈ R.

(3) Dα
t (fg) = fDα

t g + gDα
t f.
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(4) Dα
t

(
f

g

)
=
gDα

t f − fDα
t g

g2
.

Moreover, if f is differentiable, then Dα
t (f(t)) = t1−α

df

dt
. The chain rule for conformable fractional derivatives is

reported in [1] as the following theorem.

Theorem 2. Let f : (0,∞) → R, be a differentiable function and α is order of the conformable derivative. Let
g be a function defined in the range of f and also differentiable, then

Dα
t (fg) (t) = t1−αg

′
(t)f

′
(g(t)), (2.2)

here ”prime” is the classical derivative for t.

3. Description of the exp(−Φ (ξ))-expansion method

Consider the nonlinear fractional PDE of the form, as

P
(
u,Dα

t u,D
β
xu,D

2α
x u,D2β

t u,Dα
xD

β
xu, · · ·

)
= 0, 0 < α, β < 1, (3.1)

where u is unknown function and Dα
t u and Dβ

xu are conformable fractional derivatives.

Consider the transformation

u(x, t) = U (ξ) , where ξ =
xβ

β
− ν t

α

α
, (3.2)

permits us to reduce the Eq. (3.1) into an ODE of the form, as

H
(
U,U

′
, U

′′
, U

′′′
, · · ·

)
= 0. (3.3)

The proposed method can be summarized in the following three steps [35]:

Step 1 : According to the proposed method, the wave solution of Eq. (3.3) can be expressed, as

U (ξ) =

n∑
i=0

αi exp (−Φ (ξ))
i
, (3.4)

where αi (αn 6= 0) are constants, such that

Φ
′
(ξ) = exp (−Φ (ξ)) + µ exp (Φ (ξ)) + λ. (3.5)

The above Eq. (3.5) has the formal solutions as follows:

Case 1 : For λ2 − 4µ > 0 and µ 6= 0,

Φ1 (ξ) = ln

−√λ2 − 4µ tanh
(

1
2

√
λ2 − 4µ (ξ + C)

)
− λ

2µ

 . (3.6)

Case 2 : For λ2 − 4µ < 0 and µ 6= 0,

Φ2 (ξ) = ln

√4µ− λ2 tan
(

1
2

√
4µ− λ2 (ξ + C)

)
− λ

2µ

 . (3.7)

Case 3 : For λ2 − 4µ > 0 and λ 6= 0, µ = 0,

Φ3 (ξ) = − ln

[
λ

cosh (λ (ξ + C)) + sinh (λ (ξ + C))− 1

]
. (3.8)
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Case 4 : For λ2 − 4µ = 0 and λ 6= 0, µ 6= 0,

Φ4 (ξ) = ln

[
−2 (λ (ξ + C)) + 2

λ2 (ξ + C)

]
. (3.9)

Case 5 : For λ2 − 4µ = 0 and λ = 0, µ = 0, the solution of the form:

Φ5 (ξ) = ln (ξ + C) , (3.10)

here C is constant.

Step 2 : The integer n can be found by considering the homogeneous balance. Substituting Eq. (3.4) into Eq.
(3.3) and setting the coefficient of each power of (−Φ (ξ)) to zero provides a system of algebraic equations, which can
be solved by Mathematical software to find the values of ν, λ, µ, and αi.

Step 3 : By substituting αi, λ, µ, and ν into Eq. (3.4) various types of exact solutions of Eq. (3.1) can be con-
structed.

4. Mathematical analysis of the model

Recall the conformable space-time fractional CQ-NLSE of the form

iDα
t u+ βD3α

x u− γD4α
x u+ F (|u|2)u = 0. (4.1)

Consider the transformation

u(x, t) = φ(ξ)eiθ(x,t); ξ =
xα

α
− ν t

α

α
, θ = −kx

α

α
+ ω

tα

α
, (4.2)

where ω, k, ν are the constants. Inserting Eq. (4.2) into Eq. (4.1) and splitting the real and imaginary parts, we get(
−k3β + k4γ − ω

)
φ+ F (φ2)φ+ 3k(β − 2kγ)φ′′ + γφ(4) = 0, (4.3)

(
−3k2β + 4k3γ − ν

)
φ′ + (β − 4kγ)φ(3) = 0. (4.4)

From Equation (4.4), we get constraint conditions:

β = 4kγ and ν = −8k3γ. (4.5)

By inserting Eq. (4.5) into Eq. (4.3) we get(
−3k4γ − ω

)
φ+ F (φ2)φ+ 6k2γφ′′ + γφ(4) = 0. (4.6)

Now, our aim is to solve Eq. (4.6) using the above proposed method for three different law of non-linearity.

5. Implementation of the proposed method

In the following subsections, we implement the exp(−Φ(ξ))-expansion method to solve the space-time fractional
CQ-NLSE for the source of nonlinearity F (φ) takes the following three different forms:
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5.1. Parabolic Law non-linearity. First, we consider the parabolic law non-linearity

F (φ) = c1φ+ c2φ
2, (5.1)

where c1 and c2 are constants such that c2 6= 0. For the parabolic law non-linearity, the Eq. (4.6) is given by:(
−3k4γ − ω

)
φ+ c1φ

3 + c2φ
5 + 6k2γφ′′ + γφ(4). (5.2)

Considering the balance of φ(4) and φ5 in Eq. (5.2), we get N = 1. According to the proposed method the solution of
Eq.(5.2) takes the form:

φ = α0 + α1exp(−Φ(ξ)), (5.3)

where α0, and α1(6= 0) are constants.

Adding Eq. (5.3) together with Eq. (3.5) into Eq. (5.2), taking the coefficients of exp(−Φ(ξ)) and setting them
equal to zero, we find the equations as follows:

exp(−Φ(ξ))5 : 24γα1 + c2α
5
1 = 0,

exp(−Φ(ξ))4 : 60γλα1 + 5c2α0α
4
1 = 0,

exp(−Φ(ξ))3 : α1

(
12k2γ + 50γλ2 + 40γµ+ c1α

2
1 + 10c2α

2
0α

2
1

)
= 0,

exp(−Φ(ξ))2 : α1

(
3γλ

(
6k2 + 5λ2 + 20µ

)
+ 3c1α0α1 + 10c2α

3
0α1

)
= 0,

exp(−Φ(ξ))1 : − 3k4γα1 + 6k2γλ2α1 + γλ4α1 + 12k2γµα1 + 22γλ2µα1 + 16γµ2α1 − ωα1 + 3c1α
2
0α1 + 5c2α

4
0α1 = 0,

exp(−Φ(ξ))0 : −
(
3k4γ + ω

)
α0 + c1α

3
0 + c2α

5
0 + γλµ

(
6k2 + λ2 + 8µ

)
α1 = 0. (5.4)

Solving the above system by using Mathematica, we find,

α0 = ±λ
(
− 3γ

2c2

)1/4

, α1 = ±2

(
− 3γ

2c2

)1/4

,

c1 =
(
6k2 − 5λ2 + 20µ

)
c2

√
− γ

6c2
,

ω = γ
(
−3k4 − 3k2

(
λ2 − 4µ

)
+
(
λ2 − 4µ

)2)
, (5.5)

provided that (γ c2) < 0. Thus, the exact solutions to the conformable space-time fractional CQ-NLSE with parabolic
law non-linearity can be found as follows:

Case 1. For λ2 − 4µ > 0 and µ 6= 0, we have the hyperbolic function solution:

u1(x, t) =±
(
− 3γ

2c2

)1/4
λ− 4µ

λ+
√
λ2 − 4µ tanh

[
1
2

√
λ2 − 4µ (c+ ξ)

]
 ei(−k xαα +ω t

α

α ). (5.6)

This is the dark soliton solution. Corresponding 3D and 2D graphics of u1(x, t) are shown in Figs. 1 (a) and 1 (b).

Case 2. For λ2 − 4µ < 0 and µ 6= 0, we have the trigonometric function solution:

u2(x, t) =±
(
− 3γ

2c2

)1/4
λ− 4µ

λ−
√
−λ2 + 4µ tan

[
1
2

√
−λ2 + 4µ (c+ ξ)

]
 ei(−k xαα +ω t

α

α ). (5.7)

This is the periodic singular soliton solution. Corresponding 3D and 2D graphics of u2(x, t) are shown in Figs. 2 (a)
and 2 (b).
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Case 3. For λ2 − 4µ > 0 and λ 6= 0, µ = 0,

u3(x, t) = ±
(
− 3γ

2c2

)1/4

λ coth

[
1

2
λ(c+ ξ)

]
ei(−k

xα

α +ω t
α

α ), (5.8)

which is the singular soliton solution as shown in Figure 3.

Case 4. For λ2 − 4µ = 0 and λ 6= 0, µ 6= 0,

u4(x, t) = ±
(
− 3γ

2c2

)1/4 [
2λ

2 + λ(c+ ξ)

]
ei(−k

xα

α +ω t
α

α ), (5.9)

which is the rational function solution.

Case 5. For λ2 − 4µ = 0 and λ = 0, µ = 0,

u5(x, t) = ±
(
− 3γ

2c2

)1/4 [
2

c+ ξ

]
ei(−k

xα

α +ω t
α

α ), (5.10)

where ξ = xα

α − ν
tα

α .

Note that the obtained solutions are in agreement with the solution obtained in [24, 54] for specific choice of pa-
rameters.

Figure 1. (a) Three dimensional plot for dark soliton solution of (5.6) where λ = 3, µ = 2, γ = 1, c =
−1, c2 = −1, α = 0.8, ν = 1 (b) Two dimensional line plot of (5.6) for t = 1.

Figure 2. (a) Three dimensional plot for periodic singular soliton solution of (5.7) where λ = 3, µ = 2.7, γ =
1, c = −1, c2 = −1, α = 0.8, ν = 1 (b) two dimensional line plot of (5.7) for t = 1.
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Figure 3. (a) Three dimensional plot for singular soliton solution of (5.8) where λ = 5, µ = 0, γ = 1, c =
−1, c2 = −1, α = 0.5, ν = 1 (b) Two dimensional line plot of (5.8) with t = 1.

5.2. Quadratic-Cubic law non-linearity. Consider the functional,

F (φ) = c1
√
φ+ c2 φ, (5.11)

where c1 and c2 are constants. For quadratic-cubic law non-linearity, the Eq. (4.6) is given by:(
−3k4γ − ω

)
φ+ c1φ

2 + c2φ
3 + 6k2γφ′′ + γφ(4). (5.12)

Considering the balance of φ(4) and φ3 in Eq. (5.12), we get N = 2. The solution of Eq. (5.12) takes the form:

φ = α0 + α1exp(−Φ(ξ)) + α2exp(−Φ(ξ))2, (5.13)

where α0, α1 and α2(6= 0) are constants.

Substituting Eq. (5.13) together with Eq. (3.5) into Eq. (5.12), considering the coefficients of exp(−Φ(ξ)) and
setting them equal to zero, we find the equations as follows:

exp(−Φ(ξ))6 : 120γα2 + c2α
3
2 = 0,

exp(−Φ(ξ))5 : 112γλα2 + α1

(
8γ + c2α

2
2

)
= 0,

exp(−Φ(ξ))4 : 60γλα1 + 3c2α
2
1α2 + α2

(
36k2γ + 330γλ2 + 240γµ+ c1α2

)
+ 3c2α0α

2
2 = 0,

exp(−Φ(ξ))3 : 2γ
(
6k2 + 25λ2 + 20µ

)
α1 + c2α

3
1 + 2

(
5γλ

(
6k2 + 13λ2 + 44µ

)
+ (c1 + 3c2α0)α1

)
α2 = 0,

exp(−Φ(ξ))2 : α1

(
3γλ

(
6k2 + 5

(
λ2 + 4µ

))
+ (c1 + 3c2α0)α1

)
+ γ

(
−3k4 + 24k2

(
λ2 + 2µ

)
+ 8

(
2λ4 + 29λ2µ+ 17µ2

))
α2

+
(
−ω + 2c1α0 + 3c2α

2
0

)
α2 = 0,

exp(−Φ(ξ))1 : γ
(
−3k4 + λ4 + 22λ2µ+ 16µ2 + 6k2

(
λ2 + 2µ

))
α1(

−ω + 2c1α0 + 3c2α
2
0

)
α1 + 6γλµ

(
6k2 + 5

(
λ2 + 4µ

))
α2 = 0,

exp(−Φ(ξ))0 : α0

(
−3k4γ − ω + α0 (c1 + c2α0)

)
+ γλµ

(
6k2 + λ2 + 8µ

)
α1 + 2γµ2

(
6k2 + 7λ2 + 8µ

)
α2 = 0. (5.14)

Solving the above system by using Mathematica, we find,

α0 = ±2µ

√
−30γ

c2
, α1 = ±2λ

√
−30γ

c2
,

α2 = ±2

√
−30γ

c2
, c1 = ±

(
6k2 + 5

(
λ2 − 4µ

))
c2

√
− 3γ

10c2
,

ω = γ
(
−3k4 + 6k2

(
λ2 − 4µ

)
+
(
λ2 − 4µ

)2)
, (5.15)
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provided that (γ c2) < 0. Thus, the exact solutions to the conformable space-time fractional CQ-NLSE with quadratic-
cubic law non-linearity can be constructed as follows:

Case 1. For λ2 − 4µ > 0 and µ 6= 0, we have the hyperbolic function solution:

u1(x, t) =± 2µ

√
−30γ

c2

1−
2
(
λ2 − 2µ+ λ

√
λ2 − 4µ tanh

[
1
2

√
λ2 − 4µ(c+ ξ)

])
(
λ+

√
λ2 − 4µ tanh

[
1
2

√
λ2 − 4µ(c+ ξ)

])2

 ei(−k xαα +ω t
α

α ). (5.16)

This is the dark soliton solution. Corresponding 3D and 2D graphics of u1(x, t) are shown in Figs. 4 (a) and 4 (b).

Case 2. For λ2 − 4µ < 0 and µ 6= 0, we have the trigonometric function solution:

u2(x, t) =± 2 µ

√
−30γ

c2

1 +
2
(
−λ2 + 2µ+ λ

√
−λ2 + 4µ tan

[
1
2

√
−λ2 + 4µ(c+ ξ)

])
(
λ−

√
−λ2 + 4µ tan

[
1
2

√
−λ2 + 4µ(c+ ξ)

])2

 ei(−k xαα +ω t
α

α ).

(5.17)

This is the periodic singular soliton solution. Corresponding 3D and 2D graphics of u2(x, t) are shown in Figs. 5 (a)
and 5 (b).

Case 3. For λ2 − 4µ > 0 and λ 6= 0, µ = 0,

u3(x, t) = ±2

√
−30γ

c2

[
µ+

1

4
λ2 csch2

[
1

2
λ(c+ ξ)

]]
ei(−k

xα

α +ω t
α

α ), (5.18)

which is the singular soliton solution. Corresponding 3D and 2D graphics of u3(x, t) are shown in Figs. 6 (a) and 6 (b).

Case 4. For λ2 − 4µ = 0 and λ 6= 0, µ 6= 0,

u4(x, t) = ±2

√
−30γ

c2

[
µ− λ2

4
+

λ2

(2 + λ(c+ ξ))2

]
ei(−k

xα

α +ω t
α

α ), (5.19)

which is the rational function solution.

Case 5. For λ2 − 4µ = 0 and λ = 0, µ = 0,

u5(x, t) = ±2

√
−30γ

c2

[
1

(c+ ξ)2

]
ei(−k

xα

α +ω t
α

α ), (5.20)

where ξ = xα

α − ν
tα

α .

Note that the obtained solutions are in agreement with the solution obtained in ref. [54] for specific choice of param-
eters.

5.3. Weak non-local law non-linearity. Consider the non-linearity,

F (φ) = c1φ+ c2φ
2 + c3φxx. (5.21)

where c1, c2 and c3 are constants. Corresponding to the weak non-local law non-linearity, the Eq. (4.6) is given by:

c1φ
3 + c2φ

5 + φ
(
−k3β + k4γ − ω + 2c3φ

′2
)

+ 3k(β − 2kγ)φ′′ + 2c3φ
2φ′′ + γφ(4). (5.22)

Taking the balance of φ(4) and φ5 in Eq. (5.22), we get N = 1. The solution of Eq. (5.22) takes formal form:

φ = α0 + α1exp(−Φ(ξ)), (5.23)
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Figure 4. (a) Three dimensional plot for dark soliton solution of (5.16) where λ = 3, µ = 2, γ = 1, c =
−1, c2 = −1, α = 0.8, ν = 1 (b) Two dimensional line plot of (5.16) with t = 1.

Figure 5. (a) Three dimensional plot for periodic singular soliton solution of (5.17) where λ = 3, µ =
2.7, γ = 1, c = −1, c2 = −1, α = 0.8, ν = 1 (b) Two dimensional line plot of (5.17) with t = 1.

Figure 6. (a) Three dimensional plot for singular soliton solution of (5.18) where λ = 0.5, µ = 2, γ = 1, c =
−1, c2 = −1, α = 0.5, ν = 1 (b) Two dimensional line plot of (5.18) with t = 1.

where α0, and α1 are constants.

Adding Eq. (5.23) together with Eq. (3.5) into Eq. (5.22), taking the coefficients of exp(−Φ(ξ)) and setting them
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equal to zero, we find the equations as follows:

exp(−Φ(ξ))5 : 24γα1 + 6c3α
3
1 + c2α

5
1 = 0,

exp(−Φ(ξ))4 : 5α1

(
2λ
(
6γ + c3α

2
1

)
+ α0

(
2c3α1 + c2α

3
1

))
= 0,

exp(−Φ(ξ))3 : 2γ
(
6k2 + 25λ2 + 20µ

)
+ 4c3α

2
0 + 16c3λα0α1 +

(
4c3
(
λ2 + 2µ

)
+ c1 + 10c2α

2
0

)
α2

1 = 0,

exp(−Φ(ξ))2 : 3γλ
(
6k2 + 5

(
λ2 + 4µ

))
+ 6c3λα

2
0 + α0

(
6c3
(
λ2 + 2µ

)
+ 3c1 + 10c2α

2
0

)
α1 + 6c3λµα

2
1 = 0,

exp(−Φ(ξ))1 : γ
(
−3k4 + λ4 + 22λ2µ+ 16µ2 + 6k2

(
λ2 + 2µ

))
− ω + 5c2α

4
0

+
(
2c3
(
λ2 + 2µ

)
+ 3c1

)
α2

0 + 8c3λµα0α1 + 2c3µ
2α2

1 = 0,

exp(−Φ(ξ))0 : c1α
3
0 + c2α

5
0 + γλµ

(
6k2 + λ2 + 8µ

)
α1 + 2c3λµα

2
0α1 − α0

(
3k4γ + ω − 2c3µ

2α2
1

)
= 0. (5.24)

Solving the above system by using Mathematica, we find,

α0 = ±1

2
λ

√
−3c3 +

√
9c23 − 24γc2
c2

, α1 = ±

√
−3c3 +

√
9c23 − 24γc2
c2

,

c1 =
1

12

[
9c3
(
2k2 + λ2 − 4µ

)
+
(
6k2 − 5λ2 + 20µ

)√
9c23 − 24γc2

]
,

ω =γ
(
−3k4 − 3k2

(
λ2 − 4µ

)
+
(
λ2 − 4µ

)2)
+

c3
8c2

(
λ2 − 4µ

)2 (−3c3 +
√

9c2 − 24γc2

)
, (5.25)

provided that γ < 0 and c2 > 0. Thus, the exact solutions to the conformable space-time fractional CQ-NLSE for the
weak non-local law non-linearity can be constructed as follows:

Case 1. For λ2 − 4µ > 0 and µ 6= 0, we have the hyperbolic function solution:

u1(x, t) =γ
(
−3k4 − 3k2

(
λ2 − 4µ

)
+
(
λ2 − 4µ

)2)
. (5.26)

This is the dark soliton solution. Corresponding 3D and 2D graphics of u1(x, t) are shown in Figures 7 (a) and 7 (b).

Case 2. For λ2 − 4µ < 0 and µ 6= 0, we have the trigonometric function solution:

u2(x, t) =± 1

2

√
−3c3 +

√
9c23 − 24γc2
c2

λ− 4µ

λ−
√
−λ2 + 4µ tan

[
1
2

√
−λ2 + 4µ(c+ ξ)

]
 ei(−k

xα

α +ω t
α

α ).

(5.27)

This is the periodic singular soliton solution. Corresponding 3D and 2D graphics of u2(x, t) are shown in Figures. 8
(a) and 8 (b).

Case 3. For λ2 − 4µ > 0 and λ 6= 0, µ = 0,

u3(x, t) = ±1

2
λ

√
−3c3 +

√
9c23 − 24γc2
c2

coth

[
1

2
λ(c+ ξ)

]
ei(−k

xα

α +ω t
α

α ), (5.28)

which is the singular soliton solution. Corresponding 3D and 2D graphics of u3(x, t) are shown in Figures 9 (a) and
9 (b).

Case 4. For λ2 − 4µ = 0 and λ 6= 0, µ 6= 0,

u4(x, t) = ±

√
−3c3 +

√
9c23 − 24γc2
c2

λ

2 + λ(c+ ξ)
ei(−k

xα

α +ω t
α

α ), (5.29)
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which is the rational function solution.

Case 5. For λ2 − 4µ = 0 and λ = 0, µ = 0,

u5(x, t) = ±

√
−3c3 +

√
9c23 − 24γc2
c2

1

(c+ ξ)
ei(−k

xα

α +ω t
α

α ). (5.30)

Where ξ =
xα

α
− ν t

α

α
.

Note that the obtained solutions are consists of the solution obtained in [54] for specific choice of parameters. More-
over, on comparing our extracted solutions with the other existing solutions in the literature, it is found that our
results are new and not found in the literature except for the special choice of parameters as mentioned above.

Figure 7. (a) Three dimensional plot for dark soliton solution of (5.26) where λ = 3, µ = 2, γ = −1, c =
−1, c2 = 1, c3 = 1, α = 0.8, ν = 1 (b) Two dimensional line plot of (5.26) with t = 1.

Figure 8. (a) Three dimensional plot for periodic singular soliton solution of (5.27) where λ = 3, µ =
2.7, γ = −1, c = −1, c2 = 1, c3 = 1, α = 0.8, ν = 1 (b) Two dimensional line plot of (5.27) with t = 1.

6. Graphical representation

In this section, we present the graphs of some solutions for Eq. (1.2). Let us now examine Figures 1-9, as it
illustrates the dynamical structures of obtained solutions through 3D and 2D plots. To this aim, we select some
special values of the obtained parameters. From the above figures, one can see that the obtained solutions possess
the dark soliton solution, the singular soliton solution and the periodic wave solution of Eq. (1.2). Also, the exact
solutions and figures obtained in this paper give us a different physical interpretation for the space-time fractional
cubic-quartic nonlinear Schrödinger equation.
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Figure 9. (a) Three dimensional plot for singular soliton solution of (5.28) where λ = 0.5, µ = 0, γ = −1, c =
−1, c2 = 1, c3 = 1, α = 0.5, ν = 1 (b) Two dimensional line plot of (5.28) with t = 1.

7. Conclusions

In this paper, we have obtained the optical soliton solutions to the space-time fractional cubic-quartic nonlinear
Schrödinger equation with different laws of nonlinearity. By utilizing conformable fractional derivative and wave
transformation, the fractional cubic-quartic nonlinear Schrödinger equation is converted to an ODE. The resulting
ODE is solved by employing the exp(−Φ(x)) expansion method. Based on the method, explicit solutions such as dark
soliton, singular soliton and periodic wave solutions are obtained. By comparing our solutions to the results obtained
in literature, our obtained solutions are new and different. Moreover, the obtained solutions are plotted graphically
to check the dynamical behaviour of the solutions. It can be observed that the proposed method is an efficient and
reliable technique for finding the soliton solutions of the governing equation that plays a significant role in the field of
nonlinear optics.
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