تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,047 |
تعداد مشاهده مقاله | 52,589,963 |
تعداد دریافت فایل اصل مقاله | 15,269,267 |
مهار زیستی بیماری پژمردگی فوزاریومی نخود با استفاده از قارچ Rhizophagus irregularis و کود زیستی نیتروکسین | ||
پژوهش های کاربردی در گیاهپزشکی | ||
دوره 10، شماره 4، آذر 1400، صفحه 61-70 اصل مقاله (1.01 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/arpp.2021.13488 | ||
نویسندگان | ||
مرتضی قربانی* 1؛ سیدکاظم صباغ2؛ اسداله کریمی3 | ||
1گروه زیست شناسی ، دانشکده علوم، دانشگاه بیرجند، بیرجند، ایران. | ||
2بیوتکنولوژی گیاهی، گروه زیست شناسی، دانشکده علوم، دانشگاه یزد، یزد، ایران. | ||
3گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران. | ||
چکیده | ||
چکیده در این مطالعه تاثیر قارچ-ریشه Rhizophagus irregularis و کود زیستی نیتروکسین به صورت تنهایی و در ترکیب با هم در گیاه نخود زراعی آلوده به قارچ Fusarium oxysporum f. sp. ciceris مورد بررسی قرار گرفت. ارزیابی اثر بخشی این تیمارها با اندازه گیری تغییرات رنگدانه های کلروفیلی و کارتنوئیدی و ارزیابی شدت بیماریزایی انجام گرفت. یک طرح بلوکهای کاملا تصادفی در هشت تیمار و سه تکرار مستقل از هم در شرایط گلخانه انجام گرفت. نتایج ما نشان داد که میزان رنگدانه های کلروفیلی و کارتنوئیدی در گیاهان آلوده بدون تیمار کودهای زیستی به میزان معنی داری کاهش یافته است در حالیکه که شدت بیماری زایی افزایش یافت. بیشترین میزان افزایش رنگدانه های کلروفیل a و کارتنوئید در تیمار نیتروکسین مشاهده شد درحالیکه بیشترین میزان افزایش کلروفیل b و ab در تیمار قارچ-ریشه ثبت گردید. تقریباً بیشترین میزان تغییرات در صفات اندازه گیری شده، مربوط به تیمار قارچ-ریشه بود. درحالیکه تمام تیمارها قادر به افزایش اجزاء عملکرد نسب به شاهد بودند. نتایج حاصل از ارزیابی شدت بیماریزایی در گیاهان بیمار تلقیح شده با کودهای زیستی نشان داد ترکیب دو کود زیستی باعث کاهش معنی داری در میزان شدت بیماری شده است. با توجه به نتایج این تحقیق پیشنهاد می شود که استفاده از مخلوط دو کود زیستی به صورت مخلوط با بستر کشت میتواند با افزایش اجزاء عملکرد گیاه، مقاومت آن را نسبت به تنش بیماری افزایش دهد | ||
کلیدواژهها | ||
کلمات کلیدی: آزوسپریلیوم؛ ازتوباکتر؛ اجزاء عملکرد؛ شدت بیماری؛ قارچ ریشه؛ کود زیستی | ||
مراجع | ||
References
Aghbashlo M, Tabatabaei M, Soltanian S, Ghanavati H, 2019. Biopower and biofertilizer production from organic municipal solid waste: an exergoenvironmental analysis. Renewable Energy 143: 64–76. Akhtar M, Siddiqui Z, 2010. Effects of AM fungi on the plant growth and root-rot disease of chickpea. American-Eurasian Journal of Agricultural and Environmental Science 8: 544–549. Akköprü A, Demir S, 2005. Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f.sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. Journal of Phytopathology 153: 544–550. Arora N, Kang S, Maheshwari D, 2001. Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Current Science 81(6): 673–677. Arnon A, 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal 23: 112–21. Bardin SD, Huang H-C, Pinto J, Amundsen EJ, Erickson RS, 2004. Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae. Canadian Journal of Botany 82: 291–296. Barea JM, Pozo MJ, Azcón R, Azcón‐Aguilar C, 2013. Microbial interactions in the rhizosphere. Molecular Microbial Ecology of the Rhizosphere 1: 29–44. Delany I, Sheehan MM, Fenton A, Bardin S, Aarons S, et al., 2000. Regulation of production of the antifungal metabolite 2: 4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. The GenBank accession number for the sequence reported in this paper is AF129856. Microbiology 146: 537–546. Dugassa G, Von Alten H, Schönbeck F, 1996. Effects of arbuscular mycorrhiza (AM) on health ofLinum usitatissimum L. infected by fungal pathogens. Plant and Soil 185: 173–182. Filion M, St-Arnaud M, Jabaji-Hare S, 2003. Quantification of Fusarium solani f.sp. phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology 93: 229–235. Ganjeali A, Porsa H, Bagheri A, 2011. Assessment of Iranian chickpea (Cicer arietinum L.) germplasms for drought tolerance. Agricultural Water Management 98: 1477–1484. Gong M-F, Han S, Li C, Xu L, Wei G-H, 2011. Isolation of endophytic bacteria from nodule of Sophora alopecuroides and effect of biological control against Fusarium wilt. Microbiology/Weishengwuxue Tongbao 38: 865–870. Goshasbi F, Heidari M, Sabbagh S, Makarian H, 2020. Effect of irrigation interval, bio and non-biofertilizers on yield components and some of biochemical compounds in Thyme (Thymus vulgaris L.) Journal of Horticultural Plants Nutrition 3: 51–68. (In Persian with English abstract). Hallmann J, Quadt-Hallmann A, Miller W, Sikora R, Lindow S, 2001. Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology 91: 415–422. Haryuni H, Dewi TSK, 2016. The effects of dose Rhizoctonia binucleat (BNR) and phosphorus to nitrate reductase activity (NRA) and chlorophyll of vanilla seedling (Vanilla planifolia andrews). Journal of Biology and Biology Education 8: 141–147. Jalota S, Sood A, Harman W, 2006. Assessing the response of chickpea (Cicer aeritinum L.) yield to irrigation water on two soils in Punjab (India): A simulation analysis using the CROPMAN model. Agricultural Water Management 79: 312–320. Kadyampakeni M. 2020. Interaction of soil boron application with leaf B concentration, root length density, and canopy size of citrus affected by Huanglongbing. Journal of Plant Nutrition 43(2): 186-193. Khalequzzaman K, 2015. Seed treatment with Rhizobium biofertilizer for controlling foot and root rot of chickpea. International Journal of Scientific Research in Agricultural Sciences 2: 144–150. Kohler J, Caravaca F, Carrasco L, Roldan A, 2006. Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use and Management 22: 298–304. Landa BB, Navas-Cortés JA, del Mar Jimenez-Gasco M, Katan J, Retig B, et al., 2006. Temperature response of chickpea cultivars to races of Fusarium oxysporum f.sp. ciceris: causal agent of Fusarium wilt. Plant Disease 90: 365–374. Nafady NA, Hashem M, Hassan EA, Ahmed HA, Alamri SA, 2019. The combined effect of arbuscular mycorrhizae and plant-growth-promoting yeast improves sunflower defense against Macrophomina phaseolina diseases. Biological Control 138: 10: 40–49. Navas-Cortés JA, Hau B, Jiménez-Díaz RM, 1998. Effect of sowing date host cultivar, and race of Fusarium oxysporum f. sp. ciceris on development of Fusarium wilt of chickpea. Phytopathology 88: 1338–1346.Navas-Cortés JA, Hau B, Jiménez-Díaz RM, 2000. Yield loss in chickpeas in relation to development of Fusarium wilt epidemics. Phytopathology 90: 1269–1278. Neeraj SK, 2011. Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris. European Journal Soil Biology 47 (5): 287–295. Nemec S, Datnoff L, 1993. Pepper and tomato cultivar responses to inoculation with Glomus intraradices. Advances in Horticultural Science 161–164. Onasanya O, Hauser S, Necpalova M, Salako F. K, Kreye C, Tariku M, Six J, andPypers P. 2021. On-farm assessment of cassava root yield response to tillage, plant density, weed control and fertilizer application in southwestern Nigeria. Field Crops Research, 262: 108038 Rouphael Y, Franken P, Schneider C, 2015. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae 196: 91–108. Sabbagh S, Kermanizadeh B, Gholamalizadeh A, Sirousmehr A, 2016. Effects of fertilizer treatments on components, performance components and induce resistance to wheat scab disease. Iranian Journal of Filed Crop Science 47: 77–85. (In Persian with English abstract). Vafadar F, Amooaghaie R, Otroshy M, 2014. Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. Journal of Plant Interactions 9: 128–136. Vessey JK, 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255: 571–586. Zhang BM, Zhi-Bin W, Ping X, Qiu-Hong W, He B, et al., 2018. Phytochemistry and pharmacology of genus Ephedra. ChineseJournal of Natural Medicines 16: 811–828. | ||
آمار تعداد مشاهده مقاله: 751 تعداد دریافت فایل اصل مقاله: 553 |