- [1] M. R. Ali, A truncation method for solving the time-fractional Benjamin-Ono equation, Journal of Applied Math- ematics, (2019), DOI:10.1155/2019/3456848.
- [2] T. Bakkyaraj and R. Sahadevan, Invariant analysis of nonlinear fractional ordinary differential equations with Riemann–Liouville fractional derivative, Nonlinear Dynamics, 80(1-2) (2015), 447–455.
- [3] A. Biswas, Y. Yıldırım, E. Y Ya¸sar, and M. M. Babatin, Conservation laws for Gerdjikov-Ivanov equation in nonlinear fiber optics and PCF, Optik, 148 (2017), 209–214.
- [4] A. Biswas, E. Y. Ya¸sar, Y. Yıldırım, H. Triki, Q. Zhou, S. P. Moshokoa, and M. Belic, Conservation laws for perturbed solitons in optical metamaterials, Results in physics, 8 (2018), 898–902.
- [5] G. Bluman and S. Anco, Symmetry and integration methods for differential equations, Springer Science & Business Media, 154 (2008).
- [6] E. Dastranj and H. Sahebi Fard, Exact solutions and numerical simulation for Bakstein–Howison model, Com- putational Methods for Differential Equations, (2021), 1–17, DOI:10.22034/cmde.2021.42640.1834.
- [7] A. S. Fokas and B. Fuchssteiner, The hierarchy of the Benjamin-Ono equation, Physics letters A, 86 (1981), 341–345.
- [8] P. G´erard and T. Kappeler, On the Integrability of the Benjamin–Ono Equation on the Torus, Communications on Pure and Applied Mathematics, 74 (2021), 1685–1747.
- [9] M. S. Hashemi and D. Baleanu, Lie Symmetry Analysis of Fractional Differential Equations, Chapman and Hall/CRC, 2020.
- [10] M. S. Hashemi, M.In¸c, and M. Bayram, Symmetry properties and exact solutions of the time-fractional Kolmogorov–Petrovskii–Piskunov equation, Revista mexicana de f´ısica, 65(5) (2019), 529–535.
- [11] N. H. Ibragimov, CRC handbook of Lie group analysis of differential equations, CRC press, 3 (1995).
- [12] N. H. Ibragimov, Nonlinear self-adjointness and conservation laws, J. Phys. A, 44 (2011).
- [13] N. H. Ibragimov, A new conservation theorem, Journal of Mathematical Analysis and Applications, 333 (2007), 311–328.
- [14] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo Theory and applications of fractional differential equations, Elsevier, 204 (2006).
- [15] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
- [16] M. Mirzazadeh, Y. Yıldırım, E. Ya¸sar, H. Triki, Q. Zhou, S. P. Moshokoa, M. Zaka Ullah, Aly R. Seadawy, A. Biswas, and M. Belic, Optical solitons and conservation law of Kundu-Eckhaus equation, Optik, 154 (2018), 551–557.
- [17] R. Najafi, Approximate nonclassical symmetries for the time–fractional KdV equations with the small parameter, Computational Methods for Differential Equations, 8(1) (2020), 111–118.
- [18] A. Neyrame, A. Roozi, S. S. Hosseini, and S. M. Shafiof, Exact travelling wave solutions for some nonlinear partial differential equations, Journal of King Saud University–Science, 22 (2010), 275–278.
- [19] K. Oldham and J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974.
- [20] P. J. Olver, Applications of Lie groups to differential equations, vol. 107, Springer Science & Business Media, (2000).
- [21] S. Singh, R. Sakthivel, M. Inc, A. Yusuf, and K. Murugesan, Computing wave solutions and conservation laws of conformable time-fractional Gardner and Benjamin–Ono equations, Pramana, 95 (2021), 43.
- [22] V. Shirvani and M. Nadjafikhah, Symmetry analysis and conservation laws for higher order Camassa–Holm equation, Computational Methods for Differential Equations, 8(2) (2020), 364–72.
- [23] O. Tasbozan, New analytical solutions for time fractional Benjamin-Ono equation arising internal waves in deep water, China Ocean Engineering, 33 (2019), 593–600.
- [24] G. W. Wang and M. S. Hashemi, Lie symmetry analysis and soliton solutions of time-fractional k(m,n) equation, Pramana, 88(1) (2017), 1–6.
- [25] H. Yang, J. Sun, and C. Fu, Time-fractional Benjamin-Ono equation for algebraic gravity solitary waves in baroclinic atmosphere and exact multi-soliton solution as well as interaction, Communications in Nonlinear Science and Numerical Simulation, 71 (2019), 187–201.
- [26] Y. Yıldırım and E. Ya¸sar, A (2+ 1)-dimensional breaking soliton equation: Solutions and conservation laws, Chaos, Solitons & Fractals, 107 (2018), 146–155.
- [27] E. Ya¸sar and Y. Yıldırım, On the Lie symmetry analysis and traveling wave solutions of time–fractional fifth–order modified Sawada–Kotera equation, Karaelmas Science and Engineering Journal, 8(2) (2018), 411–416.
- [28] E. Ya¸sar and Y. Yıldırım, Symmetries and conservation laws of evolution equations via multiplier and nonlocal conservation methods, New Trends in Mathematical Sciences, 5(1) (2017), 128–136.
- [29] E. Ya¸sar, Y. Yıldırım, and C. M. Khalique, Lie symmetry analysis, conservation laws and exact solutions of the seventh–order time-fractional sawada–kotera–ito equation, Results in physics, 6 (2016), 322–328.
|