- [1] J. Amani Rad, P. Kourosh, and S. Abbasbandy, Local weak form meshless techniques based on the radial point in- terpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options, Comm Nonlinear Sci Numer Simulat., 22 (2015), 1178–1200.
- [2] J. Amani Rad, P. Kourosh, and L. V. Ballestra, Pricing European and American options by radial basis point interpolation, Appl Math Comput., 251 (2015), 363–377.
- [3] L. V. Ballestra and G. Pacelli, Pricing European and American options with two stochastic factors: a highly efficient radial basis function approach, J Econ Dynam Contr., 37 (2013), 1142–1167.
- [4] S. Banei and K. Shanazari, Solving the forward-backward heat equation with a non-overlapping domain decompo- sition method based on multiquadric RBF meshfree method, Computational Methods for Differential Equations, em 9(4) (2021), 1083–1099.
- [5] V. Bayona, M. Moscoso, and M. Carretero, Manuel KindelanRBF-FD formulas and convergence properties, J Comput Phys., 229 (2010), 8281–8295.
- [6] F. Black and M. Scholes, The pricing of options and corporate liabilities, J Polit Econ., 81 (1973), 637–659.
- [7] M. D. Buhmann, Radial Basis Functions: Theory and Implementation. University of Gissen, Cambridge Univer- sity Press, 2004.
- [8] S. Chantasiriwan, Investigation of the use of radial basis functions in local collocation method for solving diffusion problems, Int Commun Heat Mass Transfer., 31 (2004), 1095–1104.
- [9] W. Cheney, An Introduction to Approximation Theory (2rd ed.), New York: AMS Cheslea Publishing: American Mathematical Society, 2000.
- [10] T. A. Driscoll and B. Fornberg, Interpolation in the limit of increasingly flat radial basis functions, Comput Math Appl., 43 (2002), 413–422.
- [11] B. Fornberg, Calculation of weights in finite difference formulas, SIAM Rev., 40 (1998), 685–691.
- [12] B. Fornberg, G. B. Wright, and E. Larsson, Some observations regarding interpolants in the limit of flat radial basis functions, Comput Math Appl., 47 (2004), 37–55.
- [13] A. Golbabai, D. Ahmadian, and M. Milev, Radial basis functions with application to finance: American put option under jump diffusion, Math Comput Model., 55 (2012), 1354–1362.
- [14] Y. C. Hon, A quasi-radial basis functions method for American options pricing, Comput Math Appl., 43 (2002), 513–524.
- [15] J. C. Hull, Options, futures, Other derivatives (7rd ed.), University of Toronto .Prentice Hall, 2002.
- [16] M. K. Kadalbajoo, A. Kumar, and L. P. Tripathi, Application of the local radial basis function-based finite difference method for pricing American options, Int J of Comput Math., 92 (2015), 1608–1624.
- [17] E. J. Kansa and Y. C. Hon, Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations, Comput Math Appl., 39 (2000), 123–137.
- [18] A. Khaliq, G. Fasshauer, and D. Voss, Using meshfree approximation for multi-asset American option problems, J Chin Inst Eng., 27 (2004), 563–571.
- [19] H. Mesgarani, S. Ahanj, and Y. Esmaeelzade Aghdam, Numerical investigation of the time-fractional Black- Scholes equation with barrier choice of regulating European option, Journal of Mathematical Modeling., (2021) 1-10.
- [20] H. Mesgarani, A. Beiranvand and Y. Esmaeelzade Aghdam, The impact of the Chebyshev collocation method on solutions of the time-fractional Black-Scholes, Mathematical Sciences., 15 (2) (2021), 1–13.
- [21] V. Mohammadi, M. Dehghan, and S. De Marchi, Numerical simulation of a prostate tumor growth model by the RBF-FD scheme and a semi-implicit time discretization, Journal of Computational and Applied Mathematics., 388 (2021), 113314.
- [22] V. Mohammadi, D. Mirzaei, and M. Dehghan, Numerical simulation and error estimation of the time-dependent Allen-Cahn equation on surfaces with radial basis functions, Journal of Scientific Computing., 79 (2019), 493–516.
- [23] U. Petterssona, E. Larssona, G. Marcussonb, and J. Perssonc, Improved radial basis function methods for multi- dimensional option pricing, J Computl Appl Math., 222 (2008), 82–93.
- [24] M. Safarpoor and A. Shirzadi, A localized RBF-MLPG method for numerical study of heat and mass transfer equations in elliptic fins, Engineering Analysis with Boundary Elements., 98 (2019), 35–45.
- [25] M. Safarpoor and A. Shirzadi, Numerical investigation based on radial basis function–finite-difference (RBF–FD) method for solving the Stokes-Darcy equations, Engineering with Computers., 37 (2021), 909–920.
- [26] M. Safarpoor, F. Takhtabnoos, and A. Shirzadi, A localized RBF-MLPG method and its application to elliptic PDEs, Engineering with Computers., 36 (2020), 171–183.
- [27] A. A. Saib, D. Y. Tangman, and M. A. Bhuruth, New radial basis functions method for pricing American options under Merton’s jump-diffusion model, Intl J Comput Math., 89 (2012), 1164–1185.
- [28] S. A. Sarra and E. J. Kansa, Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations, Tech Science Press, 2009.
- [29] S. A. Sarra and D. Sturgill, A random variable shape parameter strategy for radial basis function approximation methods, Eng Anal Bound Elem., 33 (2009), 1239–1245.
- [30] E. Shivanian and A. Jafarabadi, Numerical investigation based on a local meshless radial point interpolation for solving coupled nonlinear reaction-diffusion system, Computational Methods for Differential Equations., 9 (2) (2021), 358–374.
- [31] F. Takhtabnoos and A. Shirzadi, A Local Strong form Meshless Method for Solving 2D time-Dependent Schr¨odinger Equations, Mathematical researches., 4 (2) (2019), 1–12.
- [32] D. Tavella and C. Randall, Pricing Financial Instruments: The Finite Difference Approach, John Wiley & Sons. New York, 2000.
- [33] H. V. Vorst, BCGSTAB: a fast and smoothly converging variant of BCG for the solution of nonsymmetric linear systems, SIAM J Sci Stat Comput., 18 (1992), 631–644.
- [34] H. Wendland, Scattered Data Approximation, Cambridge University Press, 2005.
- [35] P. Wilmott, S. Howison, and J. Dewynne, Option Pricing: Mathematical Models and Computations, Oxford Financial Press, Oxford, 1995.
- [36] P. Wilmott, Introduces Quantitative Finance, John Wiley & Sons, 2007.
- [37] P. Wilmott, The Theory and Practice of Financial Engineering, John Wiley & Sons, 1998.
|