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Abstract

A novel local meshless scheme based on the radial basis function (RBF) is introduced in this article for price
multi-asset options of even European and American types based on the Black-Scholes model. The proposed

approach is obtained by using operator splitting and repeating the schemes of Richardson extrapolation in the

time direction and coupling the RBF technology with a finite-difference (FD) method that leads to extremely
sparse matrices in the spatial direction. Therefore, it is free of the ill-conditioned difficulties that are typical of the

standard RBF approximation. We have used a strong iterative idea named the stabilized Bi-conjugate gradient

process (BiCGSTAB) to solve highly sparse systems raised by the new approach. Moreover, based on a review
performed in the current study, the presented scheme is unconditionally stable in the case of independent assets

when spatial discretization nodes are equispaced. As seen in numerical experiments, it has a low computational

cost and generates higher accuracy. Finally, the proposed local RBF scheme is very versatile so that it can be
used easily for solving numerous models and obstacles not just in the finance sector, as well as in other fields of

engineering and science.
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1. Introduction

An option is a contract that provides the right, but not the obligation, to buy or sell one unit of a risky asset at a
predetermined fixed price (strike price) within a determined period (maturity). Typically, two parties are involved
in an option. One party is the writer who specifies the terms of the contract and sells the option. Another party is
the holder who buys the option by paying the market price which is called option price. One of the hottest topics
in financial markets is option pricing referred to compute a fair value of the option. There are two types of options:
The call option which gives the holder the right to buy the underlying assets and the put option which gives the
holder the right to sell them. Both kinds of options can be traded as a European style so that the option should be
exercised only at the maturity or as an American style so that it also can be exercised at any time up to the maturity.
Various mathematical models for option pricing have been developed based on partial differential equations. One of
such models is the Black-Scholes (BS) model which is presented by Black and Scholes [6] in which the volatility (or
standard deviation) of the option’s underlying asset is assumed to be constant.
Some traditional mesh-based methods for solving the B-S equation are the finite difference (FD) and the finite element
(FE) methods [32, 35]. They all suffer from mesh and mesh difficulties and also cannot develop to high dimensions
easily. Recently, to deal with such problems, a new generation of meshless techniques on radial basis functions (RBFs)
has also been developed. Authors in [13, 14, 19, 20, 27] have considered the one-dimensional B-S equation using
such methods. However, most of them required solving a large full system matrix arisen from ill-conditioned systems.
Authors in [1] and [2] have presented radial basis point interpolation (RBPI) and radial point interpolation (RPI)
schemes respectively to overcome this difficulty. On the other hand, efforts for solving multi-dimensional B-S equation
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using meshless methods are extremely scarce, however, some works have been done [3, 18, 23]. For example, Ballestra
and Pacelli have considered two-dimensional case by combining Gaussian radial basis functions with operator splitting
scheme [3]. Some efforts have been done to use radial basis function generated finite difference (RBF-FD) approach
for option pricing [16].

2. The B-S model for basket options

In this section, the B-S model is introduced for the basket options which means the underlying assets are two or more.
Let the price of each underlying assets be Si, i = 1, 2, . . . , d, in the subsequent stochastic differential formula in the
risk-neutral scale [15, 37]

dSi = (r −Di)Sidt+ σiSidWi, i = 1, 2, . . . , d, (2.1)

in which the constant interest rate is r. In addition, Di and σi are respectively the dividend yield and the volatility of
the ith asset which are constant, as well as, Wi shows a standard Wiener process for ith asset. If ρij is the correlation
coefficient between both the ith and jth processes, then the symmetric matrix with ρij is named the correlation matrix
in the following form as the entry in the ith row and jth column.

Σ =


ρ11 ρ12 . . . ρ1d

ρ21 ρ22 . . . ρ2d

...
...

. . .
...

ρd1 ρd2 . . . ρdd

 . (2.2)

Notice that the correlation matrix, ρii = 1 and ρij = ρji are positive definite. Also, assume that V (S, t) be the option
price at the vector of underlying assets S = (S1, . . . , Sd) ∈ Ω and time t ∈ [0, T ) where

Ω = (0,+∞)× . . .× (0,+∞) (2.3)

and T is the maturity. The following multi-dimensional linear parabolic partial differential problem named B-S
equation is also satisfied by V (S, t).

∂V (S, t)

∂t
+

1

2

d∑
p=1

d∑
j=1

σpσjρpjSpSj
∂2V (S, t)

∂Sp∂Sj
+

d∑
p=1

(r −Dp)Sp
∂V (S, t)

∂Sp
− rV (S, t) = 0. (2.4)

One can obtain the European call problem by attaching the following final condition to (2.4)

V (S, T ) = Gc(S), (2.5)

where Gc(S) is called the payoff function and defined as follows

Gc(S) = max
( d∑
j=1

αjSj −K, 0
)
. (2.6)

By taking its final condition as continues, then it changes to a European issue.

V (S, T ) = Gp(S), (2.7)

where the payoff function in this case is

Gp(S) = max
(
K −

d∑
j=1

αjSj , 0
)
. (2.8)

As well as, boundary conditions are derived from the exact solution given by [36]. Further details about the boundary
conditions are provided in the subsequent sections.
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3. RBF-FD scheme

As it is customary, using a global RBF approximation results in extremely dense and ill-conditioned RBF matrices,
especially when the matrix dimension is enhanced. While Kansa et. al. [17] are presented some techniques to overcome
this difficulty, others uses variable shape parameter strategies That corresponds to different shape parameters for each
center due to decrease condition number [21, 22, 29].
To reduce the density and condition number of RBF matrices, we can use the remarkable idea of finite difference (FD)
method. It uses local approximations to localize the collocation method which leads to sparse matrices. Let L be a

linear partial differential operator, Ξ = {x1, . . . ,xN} ⊆ Rd be a set of test points and Ξ(i) = {x(i)
1 , . . . ,x

(i)
ni } ⊆ Ξ be a

subset of nearby nodes to xi named a stencil relevant to xi including ni nodes so that xi ∈ Ξ(i) and ni < N . The FD
method approximates Lu(xi) by a linear combination of function u(x) values, as follow

Lu(xi) '
ni∑
j=1

ω
(i)
j u(x

(i)
j ), (3.1)

then, the unknown weights {ω(i)
j }

ni
j=1 are calculated by the polynomial interpolation [11]. This scheme for computing

unknown weights is possible only for some types of nodal structures specially in high dimensions, for example, 3
uniform nodes or 5 uniform nodes in one or two dimension respectively which extremely limits the geometric flexibility
of the FD method [9].

To overcome this difficulty related to calculating the unknown weights {ω(i)
j }

ni
j=1, one can use this idea that the relation

(3.1) must be held for RBFs centered at nodes inside the stencil Ξ(i) [24–26, 31], i.e. {φj(x, c)}ni
j=1, so that

Lφk(xi, c) =

ni∑
j=1

ω
(i)
j φj(xk, c), k = 1, . . . , ni. (3.2)

By collocating (3.2) at nodes of Ξ(i), one can obtain the following linear system

Φω(i) = [LΦ](i), (3.3)

where the entries of interpolant matrix Φ of dimension ni × ni are as follows

φkj = φj(xk, c), k, j = 1, . . . , ni. (3.4)

The vector ω(i) of dimension ni × 1 contains the unknown weights {ω(i)
j }

ni
j=1 called RBF-FD coefficients, and [LΦ](i)

is a ni× 1 vector containing Lφk(xi, c) for k = 1, . . . , ni. For determining the weights vector ω(i), one can use the fact
of nonsingularity of the matrix Φ [7, 28, 34] so that

ω(i) = Φ−1[LΦ](i). (3.5)

The above approach which is formed by coupling the FD and RBF methods is called RBF-FD approach. In fact,
these can be perceived as an improved FD procedure because they are the same except in the scheme of computing

the unknown weights {ω(i)
j }

ni
j=1.

The global method’s major advantage is its simplicity of programming and possible spectral precision, but its main
disadvantage is the resulting linear system’s ill-conditioning. One of the really recent and innovative solutions to this
problem is to localize the collocation process. It uses local estimations to generate sparse system matrices. One of the
local RBF methods proposes applying RBF in Finite Difference Mode [4, 5, 8]. A local distinction has been extended
to RBFs, and it is widely used in RBF research, particularly when dealing with time-dependent PDEs. Recently, so
many effects of the local RBF-FD approach are considered in comparison with the RBF and FD approaches [10, 12, 30].
Bayona et al. [5] employed the Maple software and have presented some formulae for RBF-FD coefficients when L is
just the first or second order derivative of the processor and the MQ function as basis function is used. Some of their
results for stencils with ni = 3, 5 uniform nodes are reported in Table 2 in the limit c� h. We apply results presented
in this table when Ξ is equispaced.
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Table 1. RBF-FD for the first and second derivatives.

Node First derivative Second derivative

N = 3 N = 5 N = 3 N = 5

Si−2h
1

12h

(
1 +

8h2

c2

)
− 1

12h2

(
1 +

74h2

7c2

)
Si−h − 1

2h

(
1 +

h2

2c2

)
− 2

3h

(
1 +

2h2

c2

)
1

h2

(
1 +

h2

c2

)
4

3h2

(
1 +

37h2

14c2

)
Si 0 0 − 2

h2

(
1 +

h2

c2

)
− 5

2h2

(
1 +

74h2

35c2

)
Si+h

1

2h

(
1 +

h2

2c2

)
2

3h

(
1 +

2h2

c2

)
1

h2

(
1 +

h2

c2

)
4

3h2

(
1 +

37h2

14c2

)
Si+2h − 1

12h

(
1 +

8h2

c2

)
− 1

12h2

(
1 +

74h2

7c2

)

4. Spatial and time discretization

In this section, we are continuing to develop the RBF-FD method to solve the multi-dimensional B-S equation (2.4).
For simplicity in formulation, we focus on two-dimensional put option i.e. we put d = 2 in (2.4), however, one can
easily employ it for the call option or higher dimensions with a little modifications.
In the first place, let us impose the change of variables

τ = T − t, Ṽ (S, τ) = erτV (S, T − τ), (4.1)

therefore, Problem (2.4) and (2.7) turns to

∂Ṽ (S, τ)

∂τ
= α̃1(S)

∂2Ṽ (S, τ)

∂S2
1

+ ζ̃(S)
∂2Ṽ (S, τ)

∂S1∂S2
+ α̃2(S)

∂2Ṽ (S, τ)

∂S2
2

β̃1(S)
∂Ṽ (S, τ)

∂S1
+ β̃2(S)

∂Ṽ (S, τ)

∂S2
, (4.2)

and

Ṽ (S, τ) = Gp(S), (4.3)

where S = (S1, S2) and Gp(S) can be calculated as before using (2.8) when d = 2, also

α̃i(S) =
1

2
σ2
i S

2
i , β̃i(S) = (r −Di)Si, i = 1, 2, ζ̃(S) = σ1σ2ρS1S2. (4.4)

Also, we consider the following boundary conditions

Ṽ (0, S2, τ) = erτα2f(S2,
K

α2
, τ), lim

S1→+∞
Ṽ (S1, S2, τ) = 0, (4.5)

Ṽ (S1, 0, τ) = erτα1f(S1,
K

α1
, τ), lim

S2→+∞
Ṽ (S1, S2, τ) = 0, (4.6)

where f(S2,
K
α2
, τ) and f(S1,

K
α1
, τ) are the solutions of the basic BS equation of a normal put with strike prices K

α2

and K
α1

respectively which are available by the analytical solution of one-dimensional B-S equation given in [36].

4.1. Temporal discretization. In order to discretize Problem (4.2)-(4.6) in time, we use the splitting scheme in
which the equation (4.2) is solved along separate direction. We can rewrite (4.2) as follows

∂Ṽ (S, τ)

∂τ
= (L̃1 + L̃2 + L̃12)Ṽ (S, τ), (4.7)
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where

L̃i = α̃i(S)
∂2

∂S2
i

+ β̃i(S)
∂

∂Si
i = 1, 2, L̃12 = ζ̃(S)

∂2

∂S1∂S2
. (4.8)

Let τ0, τ1, . . . , τM be M equally spaced time levels for [0, T ] with ∆τ = T
M so that τk = k∆τ , k = 0, 1, . . . ,M . Then

for each time step k = 1, 2, . . . ,M , we define the following multi-steps operator splitting so that, in first step, D̃k(S)
is calculated using implicit Euler problems

D̃k(S)− Ṽ k−1(S)

∆τ
= L̃1D̃

k(S), (4.9)

D̃(0, S2, τ) = erτα2f(S2,
K

α2
, τ), lim

S1→+∞
D̃(S1, S2, τ) = 0, (4.10)

in second step, we compute Z̃k(S) as

Z̃k(S)− D̃k(S)

∆τ
= L̃2Z̃

k(S), (4.11)

Z̃(S1, 0, τ) = erτα1f(S1,
K

α1
, τ), lim

S2→+∞
Z̃(S1, S2, τ) = 0, (4.12)

which are also implicit Euler problems. Finally, the option price Ṽ k(S) at time step k can be obtained using the
explicit Euler scheme

Ṽ k(S)− Z̃k(S)

∆τ
= L̃12Z̃

k(S). (4.13)

Remark 1. The Euler scheme is (theoretically) first order accurate. To recover the rate of covergence in time direction

and enrich the option price ṼM (S) in numerical experiments, we use the repeated Richardson extrapolation as follows

Ṽ (S) ' 1

3

(
8Ṽ 4M (S)− 6Ṽ 2M (S) + ṼM (S)

)
. (4.14)

4.2. Spatial discretization using RBF-FD approach. In this section, we employ RBF-FD approach to discretize
Problems (4.9)-(4.13). First of all, the infinite spatial domain of problem is replaced with a bounded one

Ω̃ = [0, S1∞]× [0, S2∞]

where S1∞ and S2∞ will be chosen suitably large. Assume S ∈ Ω̃ and Ξ = {S1, . . . ,SN} be a partition of Ω̃ so that it

contains NI inner nodes and NB boundary nodes in which N = NI +NB . Furthermore Ξ(i) = {S(i)
1 , . . . ,S(i)

ni
} ⊆ Ξ be

a stencil relevant to Si = (S1i, S2i) so that i = 1, . . . , NI and ni ≤ N . By starting from relation (4.9) and collocating
it at inner nodes Si, i = 1, 2, . . . , NI and also using (4.8) one can obtain

D̃k(Si) = α̃1(Si)∆τ
∂2D̃k(Si)

∂S2
1

+ β̃1(Si)
∂D̃k(Si)

∂S1
+ Ṽ k−1(Si), (4.15)

where

∂D̃k(Si)

∂S1
=

ni∑
m=1

ω(1,i)
m Dk(S(i)

m ),
∂2D̃k(Si)

∂S2
1

=

ni∑
m=1

ω(11,i)
m Dk(S(i)

m ), (4.16)

and {ω(1,i)
m }ni

m=1 and {ω(11,i)
m }ni

m=1 are the RBF-FD coefficients. Substituting relations (4.16) in (4.15) leads to the
following equation

ni∑
m=1

S(i)
m 6=Si

[
α̃1(Si)∆τω

(11,i)
m + β̃1(Si)ω

(1,i)
m

]
D̃k(Sm)
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+
[
α̃1(Si)∆τω

(11,i)
i + β̃1(Si)ω

(1,i)
i − 1

]
D̃k(Si) = Ṽ k−1(Si). (4.17)

It leads to the following linear system in the matrix form

Ã1D̃k = −Ṽk−1, (4.18)

The matrix Ã1 of dimention NI ×NI turns to a ni-diagonal matrix in the case of uniform nodes. It also turns to a
highly sparse one when the nodes are scattered. Note that in the both cases the condition number is very low and
near one.
Similarly, for the relation (4.11)

Z̃k(Si) = α̃2(Si)∆τ
∂2Z̃k(Si)

∂S2
2

+ β̃2(Si)
∂Z̃k(Si)

∂S2
+ D̃k(Si), (4.19)

where

∂Z̃k(Si)

∂S2
=

ni∑
m=1

ω(2,i)
m Zk(S(i)

m ),
∂2Z̃k(Si)

∂S2
2

=

ni∑
m=1

ω(22,i)
m Zk(S(i)

m ). (4.20)

And then by substituting (4.20) in (4.19)

ni∑
m=1

S(i)
m 6=Si

[
α̃2(Si)∆τω

(22,i)
m + β̃2(Si)ω

(2,i)
m

]
Z̃k(Sm) +

[
α̃2(Si)∆τω

(22,i)
i + β̃2(Si)ω

(2,i)
i − 1

]
Z̃k(Si) = D̃k(Si), (4.21)

which leads to the following matrix form of a linear system

Ã2Z̃k = −D̃k, (4.22)

where the matrix Ã2 has the same conditions as matrix Ã1.
Finally, by collocating (4.13) in the same inner nodes and some simplifications we have

Ṽ k(Si) = ζ̃(Si)∆τ
∂2Z̃k(Si)

∂S1∂S2
+ Z̃k(Si), (4.23)

where

∂2Z̃k(Si)

∂S1∂S2
=

ni∑
m=1

ω(12,i)
m Zn(S(i)

m ), (4.24)

in which the {ω(12,i)
m }ni

m=1 are the RBF-FD coefficients so that by substituting (4.24) in (4.23) we can calculate the

option price vector Ṽ k(Si) at desired internal nodes and time step k.

Remark 2. With solving for M times, i.e. k = 1, 2, . . . ,M , the option price vector Ṽ k(Si) is calculated by Systems
(4.18) and (4.22). Utilizing effective ways for sparse matrices focused on either direct or iterative procedures, these
extremely sparse linear system are solved. Advanced techniques, such as the process of LU factorization, can be
extended to every non-singular matrix and are very well suited to linear system solutions. When the coefficient matrix
has been high and sparse, such procedures can indeed be costly, since the triangular variables of a sparse matrix
typically have even more non-zero components than themselves. Thus a significant shared memory is needed and so
many graphics processing calculations price indeed the answer of the floating method. It includes any use of iterative
algorithms to conserve the coefficient matrix sparsity. The biconjugate gradient stabilized algorithm (BiCGSTAB),
established by Van de Vorst [33] to solve sparse linear systems [1], is now the most efficient iterative algorithm of these
forms. We employ the BiCGSTAB method for solving such highly sparse systems in numerical experiments due to
decrease computational cost.
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Table 2. Two-asset problem parameters

K σ1 σ2 r T ρ α1 α2 D1 D2

1 0.2 0.3 0.2 1 0 0.4 0.6 0 0

5. Numerical Experiments

The evaluation of the proposed splitting RBF-FD method is considered in this section using some option pricing
problems. The accuracy of conventional RBF method depends on the value of shape parameter significantly due to
illconditioned matrices. The RBF-FD approach eliminates this issue, but notice that now the value of the shape
parameter is reasonably large in any and all simulation results, enabling us to do this formulas of the RBF-FD
coefficients in Table 2 when Ξ is equivalent. All of comparisons are based on following norms.

L2 =
1

N − 2

√√√√N−1∑
i=2

(
Vexact(Si)− VMapp.(Si)

)2
, (5.1)

L∞ = max
i=2,...,N−1

∣∣Vexact(Si)− VMapp.(Si)∣∣, (5.2)

ErrFin2 = max
S∈ΩFin

∣∣Vexact(Si)− VMapp.(Si)∣∣, (5.3)

where the Vexact(Si) are the exact solutions and the Vapp(Si) M (Si) are the approximation of option values. As well,

ΩFin in (5.3) denotes the set of all internal nodes S = (S1, S2) such that K
3 ≤ S1 ≤ 5K

3 andK3 ≤ S2 ≤ 5K
3 . Note

that all numerical simulations are carried out by the MQ function using Matlab software by PC Laptop with Intel(R)
Core(TM)2 Duo CPU T6400 2 GHz 2 GB RAM.
As the first example, we consider two-asset European put option with parameters given in Table 2 and S1∞ = S2∞ = 4.
Results for uniform nodes with ni = 5 are presented in Table 3 where they shows the high accuracy of the proposed
approach. Also, we see that the convergence order (CO) is about 3.2 in Table 4. The convergence order is calculated
using the below relation

CO = log
Max. Error for previousrow
Max. Error for currentrow

2 .

As well, the approach demonstrates an excellent time performance because not only does it lead to the highly sparse
RBF-FD systems, but also they are solved by BiCGSTAB iterative algorithm. For instance, the banded structure of
matrices Ã1 and Ã2 in the case of N = 1681 is shown in Figure 1. In Figure 2, we demonstrate the absolute error for
RBF-FD method with the different values.

Table 3. Efficiency of the splitting RBF-FD method with ni = 5 using repeated Richardson extrap-
olation and smoothing scheme

N M L2 L∞ ErrFin2 CPU Time
441 21 9.6899e− 03 8.3964e− 05 4.5997e− 03 0.72
1681 41 4.5446e− 04 4.2624e− 06 2.8919e− 04 4.65
6561 81 2.1185e− 05 2.1452e− 07 1.9617e− 06 15.21
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Figure 1. Banded structure of matrices Ã1 and Ã1 with NI = 1521(N = 1681). The non-zero
elements are about 0.3 percent.

Table 4. The convergence order (CO) of the splitting RBF-FD method for pricing multi-asset options

N M L2 CO L∞ CO
64 64 5.3067e− 03 1.1349e− 03
128 128 6.5421e− 04 3.02 1.3145e− 04 3.11
256 256 7.5250e− 05 3.12 1.4205e− 05 3.21
512 512 8.3029e− 06 3.18 1.5140e− 06 3.23

Figure 2. Comparison of the absolute error for RBF-FD method with the different values.

6. Conclusion

This paper presented the RBF-FD method to price multi-asset options of both European and American types under
B-S model. The proposed approach is obtained by using operator splitting and repeated Richardson extrapolation
schemes in time direction and coupling the RBF technology with FD scheme in spatial direction which leads to
highly sparse matrices. Therefore, it is free of the ill-conditioned difficulties that are typical of the standard RBF
approximation. We also used a powerful iterative algorithm named BiCGSTAB to solve highly sparse systems raised by
the new approach. It has been shown that the presented scheme is unconditionally stable in the case of independent
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assets when spatial discretization nodes are equispaced. As well as, it has low computational cost and as seen in
experimental measurements, it provides precise results.
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