- [1] O. P. Agrawal, Fractional optimal control of a distributed system using eigenfunctions, ASME. J. Comput. Non- linear Dyn, 3 (2008), 021204.
- [2] F. A. Aliev, N .A. Aliev, M. M. Mutallimov, and A. A. Namazov, Algorithm for Solving the Identification Problem for Determining the Fractional-Order Derivative of an Oscillatory System, Applied and computational mathematics, 19(3) (2020), 415-422.
- [3] B. Alkahtani, V. Gulati, A. Klman, Application of Sumudu transform in generalized fractional reaction–diffusion equation, Int. J. Appl. Comput. Math, 2 (2016), 387–394.
- [4] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, Boston, Mass, USA, 2012.
- [5] F. B. M. Belgacem and A. A. Karaballi, Sumudu transform fundamental properties investigations and applications, Journal of Applied Mathematics and Stochastic Analysis, (2006), 1-23
- [6] F. B. M. Belgacem, A. A. Karaballi, and S. L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Mathematical Problems in Engineering, (2003), 103–118.
- [7] R. Belgacem, A. Bokhari, and B. Sadaoui, Shehu Transform of Hilfer-Prabhakar Fractional Derivatives and Applications on some Cauchy Type Problems, Advances in the Theory of Nonlinear Analysis and its Applications, 5(2) (2021), 203-214.
- [8] M. Caputo, Linear model of dissipation whose Q is almost frequency independent-II, Geophysical Journal of the Royal Astronomical Society, 13(1967), 529–539.
- [9] M. Caputo and M. A. Fabrizio, New definition of fractional derivative without singular kernel, Progr Fract Differ Appl, 1(2015), 73–85.
- [10] V. F. M. Delgado, J. F. G´omez-Aguilar, H. Y´epez-Mart ´ınez, D. Baleanu, R. F. Escobar-Jimenez, and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Advances in Difference Equations, 164 (2016), 1-17.
- [11] M. H. Derakhshan, M. A. Darani, A. Ansari, and R. K. Ghaziani, On asymptotic stability of Prabhakar fractional differential systems, Computational methods for differential equations, 4(4) (2016), 276-284.
- [12] M. A. El-Tawil and S. N. Huseen, On Convergence of q-Homotopy Analysis Method, Int. J. Contemp. Math. Sciences, 8 (2013), 481-497.
- [13] A. Erdelyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcedential Functions, Vol. 3. McGraw- Hill, New York, 1955.
- [14] R. Garra and R. Garrappa, The Prabhakar or three parameter Mittag–Leffler function: theory and application, Communications in Nonlinear Science and Numerical Simulation, 56 (2018), 314-329.
- [15] R. Garra, R. Goreno, F. Polito, and Z. Tomovski, Hilfer-Prabhakar Derivative and Some Applications, Applied Mathematics and Computation, 242(2014), 576-589.
- [16] V. Gu¨lkac, The homotopy perturbation method for the BlackScholes equation, J Stat Comput Simul, 80 (2010), 1349-1354.
- [17] O. Guner and A. Bekir, Solving nonlinear space-time fractional differential equations via ansatz method, Compu- tational methods for differential equations, 6(1) (2018), 1-11.
- [18] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006.
- [19] S. Kumar, D. Kumar, and J. Singh, Numerical computation of fractional BlackeScholes equation arising in finan- cial market, egyptian journal of basic and applied sciences, 1 (2014), 177 -183.
- [20] F. Mainardi, Fractional Calculus and Waves in Linear Visco-elasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010.
- [21] K. S. Miller and B. Ross, An Introduction to the Fractional Integrals and Derivatives, Theory and Applications, New York, 1993.
- [22] S. Mockary, A. Vahidi, and E. Babolian, An efficient approximate solution of Riesz fractional advection-diffusion equation, Computational Methods for Differential Equations, , 10(2) (2022), 307-319. DOI: 10.22034/CMDE.2021.41690.1815.
- [23] K.B. Oldham and J. Spanier, The Fractional Calculus, New York, 1974.
- [24] S. K. Panchal, Pravinkumar V. Dole, and Amol D. Khandagale, k-Hilfer-Prabhakar Fractional Derivatives and its Applications, Indian J. Math, 59( 2017), 367-383.
- [25] R. K. Pandey and H. K. Mishra, Homotopy analysis Sumudu transform method for time—fractional third order dispersive partial differential equation, Adv. Comput. Math., 43(2017), 365–383.
- [26] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J, 19 (1971), 7-15.
- [27] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- [28] J. Rashidinia and E. Mohmedi, Numerical solution for solving fractional parabolic partial differential equations, Computational Methods for Differential Equations, 10(1) (2022), 121-143. DOI: 10.22034/CMDE.2021.41150.1787.
- [29] N. H. Sweilam, A. M. Nagy, and A. A. EL-Sayed, Sinc-Chebyshev Collocation Method for Time-Fractional Order Telegraph Equation, Applied and computational mathematics, 19(2) (2020), 162-174.
- [30] G. K. Watugala, Sumudu Transform- an Integral transform to solve differential equations and control engineering problems, Internat. J. Math. Ed. Sci. Tech, 24(1993), 35-43.
- [31] A. Wiman, U¨ber den fundamental satz in der teorie der funktionen Eα(x)., Acta Math., 29 (1905), 191–201.
|