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Abstract

Prabhakar fractional operator was applied recently for studying the dynamics of complex systems from several

branches of sciences and engineering. In this manuscript, we discuss the regularized Prabhakar derivative ap-
plied to fractional partial differential equations using the Sumudu homotopy analysis method(PSHAM). Three

illustrative examples are investigated to confirm our main results.
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1. Introduction

Over the last few decades, fractional differential equations (FDEs) have been shown to have great strength and
precision in modeling a broad category of phenomena: viscoelasticity, fluid mechanics, biology, chemistry, acoustics,
control theory, economics, electronics, finance, psychology and other fields of science and engineering [1, 2, 17, 18, 20–
23, 27–29].

Several definitions of fractional order derivatives have been proposed, in particular the derivatives of Caputo and
Riemann - Liouville are studied and used in various fields of science. the modeling of natural phenomena requires
different fractional derivation operators, for this reason, it was necessary to generalize the derivatives of Riemann-
Liouville and thus of Caputo.

The integral of Prabhakar is defined by modifying the Riemann-Liouville integral operator by extending its kernel
with the three-parameter Mittag-Leffler function also known as the Prabhakar function [26]. The temporal evolution
of polarization processes in Havriliak-Negami models and other phenomena can be appropriately described by integral
and differential operators based on Prabhakar’s function [14].

Roberto Garra et. al [15] have defined the regularized version of the fractional derivatives of Prabhakar, which is
a generalization of the derivative of Caputo, they also calculated their transformation of Laplace, while Panchal et.
al [24] calculated their transformation of Sumudu. In this work, we will treat fractional differential equations in the
sense of regularized Prabhakar, where the homotopy analysis method coupled with the transformation of Sumudu is
used. The basic definitions and results of fractional calculus and Sumudu transform are given in section 2, several test
problems to demonstrate the effectiveness of the proposed method are presented in section 3, and the conclusion is
finally presented in section 4.
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2. Preliminaries

In this section, we mainly present the main features of fractional calculus and the Sumudu transform.

Definition 2.1. [4, 8, 23] Let f ∈ L1 (a, b) If α ≥ 0 then left sided Riemann–Liouville fractional integral of order α
is defined by

Iαt f (x, t) =
1

Γ (α)

t∫
0

(t− τ)
α−1

f (x, τ) dτ, α > 0, t > 0, (2.1)

I0
t f (x, t) = f (x, t) .

Definition 2.2. [4, 8, 23] Let f ∈ L1 (a, b) , and m−1 < α ≤ m. The Caputo fractional derivative of order α (α > 0)
is defined as

C
0 Dα

t f (x, t) =
1

Γ (m− α)

t∫
0

(t− x)
m−α−1

f (m) (x, τ) dx, m− 1 < α ≤ m.

=
∂m

∂tm
f (x, t) if α = m. (2.2)

Definition 2.3. [4, 8, 23] Let f ∈ L1 (a, b) , and m− 1 < α ≤ m. The Liouville fractional derivative of order, α > 0
is defined in the form

∂α

∂tα
f (x, t) =

1

Γ (m− α)

∂m

∂tm

(∫ t

−∞

f (x, τ)

(t− τ)
α−m+1 dτ

)
, m = [α] + 1. (2.3)

Definition 2.4. [13] The one parameter Mittag-Leffler function (M-L function) is defined by

Eα (z) =

∞∑
k=0

zn

Γ (αk + 1)
, z, α ∈ C, Re(α) > 0 (2.4)

The two parameter Mittag-Leffler function reads [31]

Eα,β (z) =

∞∑
k=0

zn

Γ (αk + β)
, z, α, β ∈ C, Re (α) > 0 (2.5)

such that Eα,1 (z) = Eα (z) .

Definition 2.5. [26] The three parameter M-L function, also called Prabhakar function is given by

Eγα,β (z) =
1

Γ (γ)

∞∑
k=0

Γ (γ + k)

Γ (αk + β)

zk

k!
, z, α, β, γ ∈ C, Re (α) > 0. (2.6)

In applications, it is usually used a further generalization of Eq. (2.6) given by [7]

eγα,β,ω (t;ω) = tβ−1Eγα,β (ωtα) , (2.7)

where ω ∈ C is a parameter and t > 0 the independent real variable.

Definition 2.6. [11, 26] Let f ∈ L1 [0, b] , 0 < t < b ≤ ∞. The Prabhakar integral is defined by

Eγ
α,β,ω,0+f (t) =

∫ t

0

(t− τ)
β−1

Eγα,β [ω (t− τ)
α

] f (τ) dτ =
(
f ∗ eγα,β,ω

)
(t) , (2.8)

where α, β, γ, ω ∈ C, Re (α) ,Re (β) > 0

We also recall that the left-inverse to the operator Eq. (2.8) is the Prabhakar derivative. We define it below in a
slightly different form.
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Definition 2.7. [26] Let f ∈ L1 [0, b] , 0 < t < b < ∞, and f ∗ e−γα,m−β,ω (.) ∈ Wm,1 [0, b] , m = dβe . The Prabhakar
derivative is defined as

Dγ
α,β,ω,0+f (t) =

dm

dxm
E−γα,m−β,ω,0+f (t) . (2.9)

where α, β, γ, ω ∈ C, Re (α) ,Re (β) > 0.

The Riemann–Liouville integrals in Eq. (2.1) can be expressed in terms of Prabhakar integrals as

I
m−(β+θ)
0+ f (t) = E0

α,m−(β+θ),ω,0+f (t) , (2.10)

we have that,

Dγ
α,β,ω,0+f (t) =

dm

dtm
E−γα,m−β,ω,0+f (t)

=
dm

dtm
I
m−(β+θ)
0+ E−γα,θ,ω,0+f (t) (2.11)

= Dβ+θ
0+ E−γα,θ,ω,0+f (t) .

(Dβ+θ
0+ the Riemann–Liouville derivative).

Definition 2.8. [15] Let f ∈ AC [0, b] , 0 < t < b <∞, and m = dβe . The regularized Prabhakar derivative is given

CDγ
α,β,ω,0+f (t) = E−γα,m−β,ω,0+

dm

dxm
f (t) . (2.12)

where α, β, γ, ω ∈ C, Re (α) ,Re (β) > 0.

Remark 2.9. When γ = 0, The regularized Prabhakar derivative becomes the Caputo fractional derivative.

Definition 2.10. [30] The Sumudu transform is defined by,

G (u) = S [f (t)] =

∫ ∞
0

f (ut) e−tdt, u ∈ (−τ1, τ2) ,

Over the set of functions

A =

{
f (t) / ∃τ1, τ2 > 0, |f (t)| < Me

|t|
τj , if t ∈ (−1)

j × [0,∞)

}
.

Hence, G(u), is referred to as the Sumudu of f(t).

Theorem 2.11. [3] In the complex plane C, for any Re (α) > 0,Re (β) > 0 and ω ∈ C

S−1

[
uβ−1

(1− ωuα)
γ

]
= tβ−1Eγα,β (ωtα) . (2.13)

where S−1 is the inverse Sumudu operator.

Theorem 2.12. [24] The Sumudu transform of regularized Prabhakar fractional derivative (2.12) is

S
(
Dγ
α,β,ω,0+f (x)

)
(u) = u−β (1− ωuα)

γ
G (u)−

m−1∑
k=0

uk−β (1− ωuα)
γ
f (k)

(
0+
)
. (2.14)

For further detail and properties of Sumudu transform (see [5, 6] and [30]).
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3. Description of the method using the regularized Prabhakar operator

Consider the following equation in the Prabhakar sense:

Dγ
α,β,ω,0+f (x, t) = a (x)

∂2f (x, t)

∂x2
+ b (x)

∂f (x, t)

∂x
+ c (x) f (x, t) + d (x, t) , (3.1)

with initial conditions

∂mf (x, 0)

∂tm
= fm (x) , m = 0, 1, ..., n− 1.

Let S [f (x, t)] (u) = G (x, u) . Applying the Sumudu transform to Eq. (3.1) using Eq. (2.14) we have,

u−β (1− ωuα)
γ
G (x, u)−

m−1∑
k=0

uk−β (1− ωuα)
γ
f (k)

(
x, 0+

)
=

(
a (x)

∂2

∂x2
+ b (x)

∂

∂x
+ c (x)

)
G (x, u) + S [d (x, t)] ,

equivalent to

G (x, u) =
uβ

(1− ωuα)γ

(
a (x)

∂2

∂x2
+ b (x)

∂

∂x
+ c (x)

)
G (x, u) +

uβ

(1− ωuα)γ

(
m−1∑
k=0

uk−β (1− ωuα)γ f (k) (x, 0+)+ S [d (x, t)]

)
,

or

G (x, u) =
uβ

(1− ωuα)
γ

(
a (x)

∂2

∂x2
+ b (x)

∂

∂x
+ c (x)

)
G (x, u) +

m−1∑
k=0

ukf (k)
(
x, 0+

)
+

uβ

(1− ωuα)
γ S [d (x, t)] . (3.2)

The homotopy for Eq. (3.2) is constructed as follows[10] :

G (x, u) = z
uβ

(1− ωuα)
γ

(
a (x)

∂2

∂x2
+ b (x)

∂

∂x
+ c (x)

)
G (x, u) +

m−1∑
k=0

ukf (k)
(
x, 0+

)
+

uβ

(1− ωuα)
γ S [d (x, t)] . (3.3)

The solution of Eq. (3.3) is obtained by applying the hypothesis that the solution G (x, u) is expressed as

G (x, u) =

∞∑
n=0

znGn (x, u) , m = 0, 1, 2, ..., (3.4)

substituting Eq. (3.4) into Eq. (3.3), we get

∞∑
n=0

znGn (x, u) = z
uβ

(1− ωuα)γ

(
a (x)

∂2

∂x2
+ b (x)

∂

∂x
+ c (x)

) ∞∑
n=0

znGn (x, u)+

m−1∑
k=0

ukf (k) (0+)+ uβ

(1− ωuα)γ
S [d (x, t)] ,

(3.5)

which, on comparing the coefficients of powers of z, yields

z0 : G0 (x, u) =

m−1∑
k=0

ukf (k)
(
0+
)

+
uβ

(1− ωuα)
γ S [d (x, t)] ,

z1 : G1 (x, u) = − uβ

(1− ωuα)
γ

(
a (x)

∂2

∂x2
+ b (x)

∂

∂x
+ c (x)

)
G0 (x, u)

z2 : G2 (x, u) = − uβ

(1− ωuα)
γ

(
a (x)

∂2

∂x2
+ b (x)

∂

∂x
+ c (x)

)
G1 (x, u)

... (3.6)

zn : Gn+1 (x, u) = − uβ

(1− ωuα)
γ

(
a (x)

∂2

∂x2
+ b (x)

∂

∂x
+ c (x)

)
Gn−1 (x, u) ,
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and when z → 1, Eq. (3.6) becomes the approximate solution of Eq. (3.2) and Eq. (3.3), and this solution implies
that

Hn (x, u) =

n∑
i=0

Gi (x, u) . (3.7)

Applying the inverse of the Sumudu transform of Eq. (3.7), we obtain the approximate solution of Eq. (3.1),

fn (x, t) = S−1 (Hn (x, u)) .

The series solution, Eq. (3.7) generally converge very rapidly [12, 25]

3.1. Examples. In this section, some test problems are presented using the regularized Prabhakar fractional operators

Example 3.1. Consider the following equation in the regularized Prabhakar sense:

Dγ
α,β,ω,0+f (x, t) = −2

∂f (x, t)

∂x
− ∂3f (x, t)

∂x3
(3.8)

α, β, γ, ω ∈ C, Re (α) > 0, 0 < β ≤ 1, (x, t) ∈ [0, 1]× [0, 1],
with the initial conditions

f (x, 0) = sin(x),

Let S [f (x, t)] (u) = G (x, u) , Eq. (3.8), can be written

u−β (1− ωuα)
γ
G (x, u)−

m−1∑
k=0

uk−β (1− ωuα)
γ
f (k)

(
x, 0+

)
=

(
−2

∂

∂x
− ∂3

∂x3

)
G (x, u) ,

equivalent to

G (x, u) =
uβ

(1− ωuα)
γ

(
−2

∂

∂x
− ∂3

∂x3

)
G (x, u) +

uβ

(1− ωuα)
γ

m−1∑
k=0

uk−β (1− ωuα)
γ
f (k)

(
0+
)
,

or

G (x, u) =
uβ

(1− ωuα)
γ

(
−2

∂

∂x
− ∂3

∂x3

)
G (x, u) + f

(
0+
)
. (3.9)

The homotopy for Eq. (3.9) is constructed as follows:

G (x, u) = z
uβ

(1− ωuα)
γ

(
−2

∂

∂x
− ∂3

∂x3

)
G (x, u) + sinx, (3.10)

Now, using the PSHAM, we have

z0 : G0 (x, u) = sinx

z1 : G1 (x, u) =
uβ

(1− ωuα)
γ (− cosx)

z2 : G2 (x, u) =
u2β

(1− ωuα)
2γ (− sinx)

z3 : G3 (x, u) =
u3β

(1− ωuα)
3γ cosx

...

zn : Gn+1 (x, u) =
unβ

(1− ωuα)
nγ sin(x− nπ

2
),
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the approximate solution is

Hn (x, u) =

n∑
i=0

Gi (x, u) .

Therefore

Hn (x, u) = sin(x)[1− u2β

(1− ωuα)
2γ +

u4β

(1− ωuα)
4γ −

u6β

(1− ωuα)
6γ + ...+ (−1)

n u2nβ

(1− ωuα)
2nγ ]

+ cos(x)[− uβ

(1− ωuα)
2γ +

u3β

(1− ωuα)
3γ −

u5β

(1− ωuα)
5γ + ...+ (−1)

n+1 u(2n+1)β

(1− ωuα)
(2n+1)γ

] (3.11)

Using relation (2.13) , we have

S−1

[
uiβ

(1− ωuα)
iγ

]
= tiβ+1Eiγα,iβ+1 (ωtα) .

Applying the inverse Sumudu transform to Eq. (3.11), we get

fn (x, t) = sin(x) + sin(x)

n∑
i=1

(−1)
i
t2iβE2iγ

α,2iβ+1 (ωtα)

+ cos(x)

n∑
i=0

(−1)
i+1

t(2i+1)βE
(2i+1)γ
α,(2i+1)β+1 (ωtα) ,

when n→∞, we obtain the solution of Eq. (3.8) ,

f (x, t) = sin(x) + sin(x)

∞∑
i=1

(−1)
i
t2iβE2iγ

α,2iβ+1 (ωtα)

− cos(x)

∞∑
i=0

(−1)
i
t(2i+1)βE

(2i+1)γ
α,(2i+1)β+1 (ωtα) . (3.12)

Remark 3.2. When γ = 0, Eq. (3.12) is equivalent to

f (x, t) = sin(x)

∞∑
i=0

(−1)
i 1

Γ (2iβ + 1)
t2iβ − cos(x)

∞∑
i=0

(−1)
i 1

Γ ((2i+ 1)β + 1)
t(2i+1)β ,

which is the solution of Eq. (3.8) in the Caputo sens.
Furthermore, in the subcase β = 1, the exact solution is

f (x, t) = sin(x)

∞∑
i=0

(−1)
i 1

(2i)!
t2i − cos(x)

∞∑
i=0

(−1)
i 1

(2i+ 1)!
t(2i+1)

= sin(x) cos(t)− cos(x) sin(t), (3.13)

which is the solution of Eq. (3.8) in the ordinary sens.

f (x, t) = sin(x− t).

Example 3.3. Consider the following time fractional model with homogeneous boundary conditions

{
Dγ
α,β,ω,0+f (x, y, t) = −2 ∂3

∂x3 f (x, y, t)− 2 ∂3

∂y3 f (x, y, t)

f (x, y, 0) = cos(x+ y),
(3.14)
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Let S [f (x, y, t)] (u) = G (x, y, t) , Eq. (3.14) , can be written

u−β (1− ωuα)
γ
G (x, y, u)−

m−1∑
k=0

uk−β (1− ωuα)
γ
f (k)

(
0+
)

=

(
−2

∂3

∂x3
f (x, y, t)− 2

∂3

∂y3
f (x, y, t)

)
G (x, y, u) ,

α, β, γ, and ω using the PSHAM, we have

z0 : G0 (x, y, u) = cos(x+ y)

z1 : G1 (x, y, u) = −3
uβ

(1− ωuα)
γ sin(x+ y)

z2 : G2 (x, y, u) = 9
u2β

(1− ωuα)
2γ cos(x+ y)

z3 : G3 (x, y, u) = −27
u3β

(1− ωuα)
3γ sin(x+ y)

...

zn : Gn (x, y, u) =
(−1)

n − 1

2

3nunβ

(1− ωuα)
nγ sin(x+ y) +

(−1)
n

+ 1

2

3nunβ

(1− ωuα)
nγ cos(x+ y).

The approximate solution is

Hn (x, y, u) =

n∑
i=0

Gi (x, y, u)

Therefore

Hn (x, y, u) =

n∑
i=0

(−1)
i − 1

2

3iuiβ

(1− ωuα)
iγ

sin(x+ y) +

n∑
i=0

(−1)
i
+ 1

2

3iuiβ

(1− ωuα)
iγ

cos(x+ y) (3.15)

= − sin(x+ y)

n∑
i=0

32i+1 u(2i+1)β

(1− ωuα)
(2i+1)γ

+ cos(x+ y)

n∑
i=0

32i+1 u2iβ

(1− ωuα)
2iγ

Using relation (2.13) , we have

S−1

[
uiβ

(1− ωuα)
iγ

]
= tiβEiγα,iβ+1 (ωtα) .

Therefore, by applying the inverse Sumudu transform, we get

fn (x, y, t) = − sin(x+ y)

n∑
i=0

32i+1t(2i+1)βtiβE
(2i+1)γ
α,(2i+1)β+1 (ωtα)

+ cos(x+ y)

n∑
i=0

32it2iβE2iγ
α,2iβ+1 (ωtα)

,
and, when n→∞, this becomes the following solution:

f (x, y, t) = − sin(x+ y)

∞∑
i=0

32i+1t(2i+1)βtiβE
(2i+1)γ
α,(2i+1)β+1 (ωtα)

+ cos(x+ y)

∞∑
i=0

32it2iβE2iγ
α,2iβ+1 (ωtα) . (3.16)
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Remark 3.4. When γ = 0, Eq. (3.16) is equivalent to

f (x, y, t) = − sin (x+ y)

∞∑
i=0

32i+1 1

Γ ((2i+ 1)β + 1)
t(2i+1)β + cos (x+ y)

∞∑
i=0

32i 1

Γ (2iβ + 1)
t2iβ

= − sin (x+ y)

∞∑
i=0

1

Γ ((2i+ 1)β + 1)

(
3tβ
)2i+1

+ cos (x+ y)

∞∑
i=0

1

Γ (2iβ + 1)

(
3tβ
)2i

.

Moreover, when β = 1, the exact solution is given by

f (x, y, t) = − sin (x+ y)

∞∑
i=0

1

Γ (2i+ 2)
(3t)

2i+1
+ cos (x+ y)

∞∑
i=0

1

Γ (2i+ 1)
(3t)

2i

= − sin (x+ y)

∞∑
i=0

1

(2i+ 1)!
(3t)

2i+1
+ cos (x+ y)

∞∑
i=0

1

(2i)!
(3t)

2i

= − sin (x+ y) sin (3t) + cos (x+ y) cos (3t) .

Thus

f (x, y, t) = cos (x+ y + 3t)

Example 3.5. [16, 19] Consider the the fractional Black–Scholes option pricing equation

Dγ
α,β,ω,0+f (x, t) =

∂2f (x, t)

∂x2
+ (q − 1)

∂f (x, t)

∂x
− qf (x, t) (3.17)

α, β, γ, ω ∈ C, Re (α) > 0, 0 < β ≤ 1, with the initial condition

f (x, 0) = max (ex − 1, 0) .

Now, using the PSHAM, we have
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z0 : G0 (x, u) = u0f (0)
(
x, 0+

)
= max (ex − 1, 0) ,

z1 : G1 (x, u) =
uβ

(1− ωuα)
γ

(
∂2

∂x2
+ (q − 1)

∂

∂x
− q
)
G0 (x, u)

=
quβ

(1− ωuα)
γ (max (ex, 0)−max (ex − 1, 0))

z2 : G2 (x, u) =
uβ

(1− ωuα)
γ

(
∂2

∂x2
+ (q − 1)

∂

∂x
− q
)
G1 (x, u)

=
uβ

(1− ωuα)
γ

quβ

(1− ωuα)
γ [−q (max (ex, 0)−max (ex − 1, 0))]

= − q2u2β

(1− ωuα)
2γ (max (ex, 0)−max (ex − 1, 0))

z3 : G3 (x, u) =
uβ

(1− ωuα)
γ

(
∂2

∂x2
+ (q − 1)

∂

∂x
− q
)
G2 (x, u)

=
q3u3β

(1− ωuα)
3γ (max (ex, 0)−max (ex − 1, 0))

...

zn : Gn (x, u) = − uβ

(1− ωuα)
γ

(
∂2

∂x2
+ (q − 1)

∂

∂x
− q
)
Gn−1 (x, u)

= (−1)
n−1 qnunβ

(1− ωuα)
nγ ,

the approximate solution is

Hn (x, u) =

n∑
i=0

Gi (x, u)

= max (ex − 1, 0) +
quβ

(1− ωuα)
γ (max (ex, 0)−max (ex − 1, 0))

− q2u2β

(1− ωuα)
2γ (max (ex, 0)−max (ex − 1, 0))

+
q3u3β

(1− ωuα)
3γ (max (ex, 0)−max (ex − 1, 0))

+...

+ (−1)
n−1 qnunβ

(1− ωuα)
nγ (max (ex, 0)−max (ex − 1, 0))

Thus

Hn (x, u) =

n∑
i=0

Gi (x, u) = max (ex − 1, 0) + max (ex − 1, 0)

n∑
i=1

(−1)
i qiuiβ

(1− ωuα)
iγ

+ max (ex, 0)

n∑
i=1

(−1)
i−1 qiuiβ

(1− ωuα)
iγ
. (3.18)
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Using relation (2.13) , we have

S−1

[
uiβ

(1− ωuα)
iγ

]
= tiβEiγα,iβ+1 (ωtα) .

Therefore, by applying the inverse Sumudu transform to Eq. (3.18), we get

fn (x, t) = max (ex − 1, 0) + max (ex − 1, 0)

n∑
i=1

(−1)
i
qitiβEiγα,β+1 (ωtα)

+ max (ex, 0)

n∑
i=1

(−1)
i−1

qitiβEiγα,iβ+1 (ωtα) ,

and, when n→∞, this becomes the following solution:

f (x, t) = max (ex − 1, 0)

(
1 +

∞∑
i=1

(
−qtβ

)i
Eiγα,iβ+1 (ωtα)

)

−max (ex, 0)

∞∑
i=1

(
−qtβ

)i
Eiγα,iβ+1 (ωtα) . (3.19)

Remark 3.6. When γ = 0, Eq. (3.19) is equivalent to

f (x, t) = max (ex, 0) + max (ex − 1, 0)

n∑
i=1

1

Γ (iβ + 1)

(
−qtβ

)i
−max (ex, 0)

n∑
i=1

1

Γ (iβ + 1)

(
−qtβ

)i
= max (ex, 0)

(
1−

n∑
i=0

1

Γ (iβ + 1)

(
−qtβ

)i)
+ max (ex − 1, 0)

n∑
i=0

1

Γ (iβ + 1)

(
−qtβ

)i
.

which gives

f (x, t) =
(
1− Eβ

(
−qtβ

))
max (ex, 0) + Eβ

(
−qtβ

)
max (ex − 1, 0) .

Moreover, when β = 1, the exact solution is given by

f (x, t) =
(
1− e−qt

)
max (ex, 0) + e−qt max (ex − 1, 0) .

4. Conclusion

In this work, PSHAM is proposed to solve fractional linear partial differential equations by considering regularized
Prabhakar derivatives operators. On the basis of this method, a general scheme for estimating approximate analytical
solutions of fractional equations has been developed. The methodology presented has become an important mathemat-
ical element. Since the choice of the fractional derivative depends on the problem studied and the phenomenological
behaviour of the system, the known and widely used derivatives can not meet the growing and rapid needs of physi-
cists and engineers in the study of various natural phenomena. Prabhakar derivatives are a good way to model these
phenomena, due to its comprehensiveness. This work shows that PSHAM is a very efficient tool for solving partial
linear differential equations considering regularized Prabhakar fractional operators.
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