- [1] O. P. Agrawal, General formulation for the numerical solution of optimal control problems, Int. J. Control, 50(2) (1989), 627–638 .
- [2] O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problem, Nonlinear Dynam, 38 (2004), 323–337.
- [3] O. P. Agrawal, A quadratic numerical scheme for fractional optimal control problems, Trans. ASME, J. Dyn. Syst. Meas. Control, 130(1) (2008), 011010-011016.
- [4] M. Ahmadi Darani and A. Saadatmandi, The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications, Computational Methods for Differential Equations, 5(1) (2017), 67-87.
- [5] E. Ashpazzadeh and M. Lakestani, Biorthogonal cubic Hermite spline multiwavelets on the interval for solving the fractional optimal control problems, Computational Methods for Differential Equations, 4(2) (2016), 99-115. DOI: 10.1002/oca.2615.
- [6] R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201-210.
- [7] D. Baleanu, About fractional quantization and fractional variational principles, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 2520-2523.
- [8] T. S. Chow, Fractional dynamics of interfaces between soft-nanoparticles and rough substrates, Phys. Lett. A, 342 (2005), 148-155.
- [9] S. S. Ezz-Eldien , E. H. Doha, D. Baleanu, and A. H. Bhrawy, A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems, Journal of Vibration and Control, 23(1) (2017), 16–30.
- [10] R. Garrappa, Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial, https://www.mdpi.com/2227-7390/6/2/16/htm, 2018.
- [11] I. M. Gelfand and S. V. Fomin, Calculus of Variation (R.A. Silverman, Trans.), PrenticeHall, 1963.
- [12] F. Ghomanjani, A numerical technique for solving fractional optimal control problems and fractional Riccati differential equation, Journal of the Egyptian Mathematical Society, 24 (2016), 638–643.
- [13] H. Jafari and H. Tajadodi, Fractional order optimal control problems via the operational matrices of bernstein polynomials, U.P.B. Sci. Bull., Series A, 76(3) (2014), 115-128.
- [14] S. Jahanshahi and D. F. M. Torres, A Simple Accurate Method for Solving Fractional Variational and Optimal Control Problems, J. Optim Theory Appl, 174 (2017), 156–175 .
- [15] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
- [16] E. Kreyszig, Introductory Functional Analysis with Applications, New York: John Wiley and sons, (1978).
- [17] D. V. Kruchinin, Explicit Formulas for Some Generalized Polynomials, Advenced Studies in Contemporary Math- ematics, 24(3) (2014), 327-332.
- [18] A. Lotfi, M. Dehghan, and S. A. Yousefi, A numerical technique for solving fractional optimal control problems, Comput. Math. Appl., 62 (2011), 1055-1067.
- [19] R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004), 1-104.
- [20] K. Maleknejad and H. Almasieh, Optimal control of Volterra integral equations via triangular functions, Math. Comput. Model., 53 (2011), 1902-1909.
- [21] A. Maheswaran and Elango, Characterization of delta operator for euler, Bernoulli of second kind and moot polynomials, International Journal of Pure and Applied Mathematics, 109(2) (2016), 371-384.
- [22] M. A. Moghaddam, Y. Edrisi, and M. Lakestani, Solving fractional optimal control problems us- ing Genocchi polynomials, Computational Methods for Differential Equations, 9(1) (2021), 79-93. DOI: 10.22034/cmde.2020.40292.1759.
- [23] N. F. Mott, The polarization of electrons by double scattering, Proc.R.Soc.Lond.A., 135 (1932), 429-458.
- [24] A. Nemati and S. A. Yousefi, A Numerical Method for Solving Fractional Optimal Control Problems Using Ritz Method, Journal of Computational and Nonlinear Dynamics September, 11/051015(1) (2016).
- [25] K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order, Acad. Press, N. York and London, (1974).
- [26] N. O¨ zdemir, O. P. Agrawal, D. Karadeniz, and B. B. Iskender, Fractional optimal control problem of an axis- symmetric diffusion-wave propagation, Phys. Scr, 136 (2009).
- [27] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
- [28] E. M. Rabei, K. I. Nawafleh, R. S. Hijjawi, S. I. Muslih, and D. Baleanu, The Hamilton formalism with fractional derivatives, J. Math. Anal. Appl., 327 (2007), 891-897.
- [29] S. Roman, The Umbral Calculus, Academic Press, (1984).
- [30] T. J. Rivlin, An Introduction to the Approximation of Functions, New York: Dover Publications, 1981.
- [31] S. Soradi-Zeid, Solving a class of fractional optimal control problems via a new efficient and accurate method, Computational Methods for Differential Equations, DOI: 10.22034/cmde.2020.35875.1620.
- [32] N. H. Sweilam, T. M. AL-Ajmi, and R. H. W. Hoppe, Numerical solution of some types of fractional optimal control problems, Department of Mathematics University of Houston November, 2013.
- [33] S. S. Tabatabaei and M. J. Yazdanpanah, Formulation and Numerical Solution for Fractional Order Time Optimal Control Problem Using Pontryagin’s Minimum principle, IFAC PapersOnLine, 50(1) (2017), 9224-9229.
- [34] V. Taherpour, M. Nazari, and A. Nemati, A new numerical Bernoulli polynomial method for solving fractional optimal control problems with vector components, Computational Methods for Differential Equations, 9(2) (2021), 446-466. DOI: 10.22034/cmde.2020.34992.1598.
- [35] E. Weisstein, Mott Polynomial, From MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com.
- [36] A. Yari, Numerical solution for fractional optimal control problems by Hermite polynomials, Journal of Vibration and Control (2020). DOI: 10.1177/1077546320933129.
- [37] S. A. Yousefi, A. Lotfi, and M. Dehghan, The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems, Journal of Vibration and Control Received, 17(13) (2010), 2059–2065.
- [38] M. Zamani, M. Karimi-Ghartemani, and N. Sadati, FOPID controller design for robust performance using particle swarm optimization, J. Fract. Calc. Appl. Anal., 10 (2007), 169-188.
|