تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,183 |
تعداد دریافت فایل اصل مقاله | 15,216,857 |
تشخیص عیب الکتریکی رتور ژنراتور القایی با در نظرگیری نوسانات فرکانس پایین ناشی از اثر سایه برج در توربین بادی | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 37، دوره 50، شماره 4 - شماره پیاپی 94، اسفند 1399، صفحه 1873-1883 اصل مقاله (1.37 M) | ||
نوع مقاله: علمی-پژوهشی | ||
نویسندگان | ||
ژاله هاشمی؛ اکبر رهیده* | ||
دانشکده مهندسی برق و الکترونیک - دانشگاه صنعتی شیراز | ||
چکیده | ||
در این مقاله به ارائه روشی جهت تشخیص عیب ژنراتور در یک سیستم توربین بادی پرداخته خواهدشد. ژنراتور مدنظر یک ژنراتور القایی رتور سیمپیچیشده هست و عیب مدنظر عیب الکتریکی رتور فرض شدهاست. بهدلیل اثر سایه برج، فرکانس مشخصهای در سیگنال جریان بهوجود میآید که این فرکانس مشخصه میتواند با فرکانس مشخصه ناشی از عیب تداخل داشتهباشد و عیبیابی را دچار اختلال نماید. در این مقاله از یک روش در حوزه فرکانس-زمان و سپس تغییر متغیر فرکانس استفادهشده است که برای سادگی از انرژی سیگنال در زمانهای مختلف میانگینگیری میشود. روش مذکور روش پیگردی (ردیابی) مرتبه هارمونیک میباشد. برای کاهش خطای عیبیابی در مرحله پردازش نهایی، از اندیسهای آماری استفاده خواهدشد تا بتوان بین اثر سایه برج و اثر خرابی الکتریکی رتور تمایز قائل شد. نتایج شبیهسازی مؤید این نکته هستند که با روش پیشنهادی تا حد بسیار مطلوبی میتوان این اثرات را تفکیک نمود. در انتها برای بررسی روش ردیابی مرتبه هارمونیک از نتایج تستهای آزمایشگاهی استفادهشده است. | ||
کلیدواژهها | ||
عیبیابی؛ ژنراتور القایی؛ توربین بادی؛ اثر سایه برج | ||
مراجع | ||
[1] R. Teodorescu, M. Liserre, and P. Rodríguez, Grid Converters for Photovoltaic and Wind Power Systems. John Wiley & Sons, 2010. [2] منصور اوجاقی، ناصر یزدان دوست، شهریار گل محمدزاده، «تشخیص عیب گردش روغن در یاتاقان لغزشی موتور القایی با استفاده از هارمونیکهای توان لحظهای» مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 4، صفحه 7-17، زمستان 1395. [3] مریم السادات اخوان حجازی، جواد ابراهیمی، مریم صباغپور آرانی، گئورگ قرهپتیان، «تشخیص برخط عیبهای مکانیکی سیمپیچ ترانسفورماتور با استفاده از تخمین تابع تبدیل کانال انتشار موج UWB» مجله مهندسی برق دانشگاه تبریز، جلد 47، شمار 4، صفحه 1307-1315، زمستان 1396. [4] V. Climente-Alarcon, J. A. Antonino-Daviu, A. Haavisto, and A. Arkkio, “Diagnosis of Induction Motors Under Varying Speed Operation by Principal Slot Harmonic Tracking,” IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 3591–3599, 2015. [5] H. Kim, S. Bin Lee, S. Park, S. H. Kia, and G. A. Capolino, “Reliable Detection of Rotor Faults under the Influence of Low-Frequency Load Torque Oscillations for Applications with Speed Reduction Couplings,” IEEE Trans. Ind. Appl., vol. 52, no. 2, pp. 1460–1468, 2016. [6] F. Dalvand, A. Kalantar, and M. S. Safizadeh, “A novel bearing condition monitoring method in induction motors based on instantaneous frequency of motor voltage,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 364–376, 2016. [7] S. C. Hamid A. Toliyat, Subhasis Nandi and H. Meshgin-kelk, Electric Machines Modeling, Condition Monitoring, and Fault Diagnosis, 1st ed. CRC Press, 2017. [8] T. Wang, H. Liu, L. Zhao, J. Huang, and Z. Hou, “Quantitative broken rotor bar fault detection for closed-loop controlled induction motors,” IET Electr. Power Appl., vol. 10, no. 5, pp. 403–410, 2016. [9] T. Ghanbari, “Autocorrelation function-based technique for stator turn-fault detection of induction motor,” IET Sci. Meas. Technol., vol. 10, no. 2, pp. 100–110, 2016. [10] B. Mirafzal and N. a O. Demerdash, “On Innovative Methods of Induction Motor Inter turn and Broken-Bar Fault Diagnostics,” IEEE Trans. Ind. Appl., vol. 42, no. 2, pp. 405–414, 2006. [11] N. R. Devi, “Diagnosis and Classification of Stator Winding Insulation Faults on a Three-phase Induction Motor using Wavelet and MNN,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 5, 2016. [12] S. Bin Lee et al., “Identification of False Rotor Fault Indications Produced by Online MCSA for Medium-Voltage Induction Machines,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 729–739, Jan. 2016. [13] T. Yang, H. Pen, Z. Wang, and C. S. Chang, “Feature Knowledge Based Fault Detection of Induction Motors Through the Analysis of Stator Current Data,” IEEE Trans. Instrum. Meas., vol. 65, no. 3, pp. 549–558, 2016. [14] T. A. Garcia-Calva, D. Morinigo-Sotelo, and R. De Jesus Romero-Troncoso, “Non-Uniform Time Resampling for Diagnosing Broken Rotor Bars in Inverter-Fed Induction Motors,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2306–2315, 2017. [15] Y. Trachi, E. Elbouchikhi, V. Choqueuse, and M. E. H. Benbouzid, “Induction Machines Fault Detection Based on Subspace Spectral Estimation,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5641–5651, 2016. [16] K. Yahia, M. Sahraoui, A. J. M. Cardoso, and A. Ghoggal, “The use of a modified prony’s method to detect the airgap-eccentricity occurrence in induction motors,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3869–3877, 2016. [17] A. H. Boudinar, N. Benouzza, A. Bendiabdellah, and M.-E.-A. Khodja, “Induction Motor Bearing Fault Analysis Using a Root-MUSIC Method,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3851–3860, 2016. [18] S. H. Kia, H. Henao, and G. A. Capolino, “Fault Index Statistical Study for Gear Fault Detection Using Stator Current Space Vector Analysis,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4781–4788, 2016. [19] A. Sapena-Bano, J. Burriel-Valencia, M. Pineda-Sanchez, R. Puche-Panadero, and M. Riera-Guasp, “The Harmonic Order Tracking Analysis Method for the Fault Diagnosis in Induction Motors under Time-Varying Conditions,” IEEE Trans. Energy Convers., vol. 32, no. 1, pp. 244–256, 2017. [20] A. Sapena-Bano et al., “Harmonic Order Tracking Analysis: A Novel Method for Fault Diagnosis in Induction Machines,” IEEE Trans. Energy Convers., vol. 30, no. 3, pp. 833–841, 2015. [21] A. Sapena-Bano, M. Riera-Guasp, R. Puche-Panadero, J. Martinez-Roman, J. Perez-Cruz, and M. Pineda-Sanchez, “Harmonic Order Tracking Analysis: A Speed-Sensorless Method for Condition Monitoring of Wound Rotor Induction Generators,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4719–4729, 2016. [22] J. Kim, S. Shin, S. Bin Lee, K. N. Gyftakis, M. Drif, and A. J. M. Cardoso, “Power Spectrum-Based Detection of Induction Motor Rotor Faults for Immunity to False Alarms,” IEEE Trans. Energy Convers., vol. 30, no. 3, pp. 1123–1132, 2015. [23] J. Van de Vyver, T. L. Vandoorn, J. D. M. De Kooning, L. Vandevelde, and B. Meersman, “Shaft speed ripples in wind turbines caused by tower shadow and wind shear,” IET Renew. Power Gener., vol. 8, no. 2, pp. 195–202, 2014. [24] M. Fooladi and A. Akbari Foroud, “Recognition and assessment of different factors which affect flicker in wind turbines,” IET Renew. Power Gener., vol. 10, no. 2, pp. 250–259, 2016. [25] D. S. L. Dolan and P. W. Lehn, “Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow,” 2006 IEEE PES Power Syst. Conf. Expo. PSCE 2006 - Proc., vol. 21, no. 3, pp. 2050–2057, 2006. [26] H. Sintra, V. M. F. Mendes, and R. Melício, “Modeling and Simulation of Wind Shear and Tower Shadow on Wind Turbines,” Procedia Technol., vol. 17, pp. 471–477, 2014. [27] R. K. Ibrahim, S. J. Watson, S. Djurović, and C. J. Crabtree, “An Effective Approach for Rotor Electrical Asymmetry Detection in Wind Turbine DFIGs,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8872–8881, 2018. [28] F. Cheng, J. Wang, L. Qu, and W. Qiao, “Rotor Current-based Fault Diagnosis for DFIG Wind Turbine Drivetrain Gearboxes using Frequency Analysis and a Deep Classifier,” in 2017 IEEE Industry Applications Society Annual Meeting, IAS 2017, 2017, vol. 2017–Janua, no. 2, pp. 1–9. | ||
آمار تعداد مشاهده مقاله: 361 تعداد دریافت فایل اصل مقاله: 386 |