- [1] A. E. Abouelregal, S. Yao, and H. Ahmad, Analysis of a functionally graded thermopiezoelectric finite rod excited by a moving heat source, Results in Physics, 19 (2020), 103389.
- [2] W. M. Abd-Elhameed1 and Y. H. Youssri, Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations, Comp. Appl. Math., 37 (2018), 2897–2921.
- [3] Y. E. Aghdam, H. Safdari, and M. Javidi, Numerical approach of the space fractional order diffusion equation based on the third kind of Chebyshev polynomials, Combinatorics, Crytography, Computer Sci. and Computing, Conference paper, 2019.
- [4] J. J. Ahmed, Designing the shape of coronal virus using the PDE method, General Letters in Math., 8(2) (2020), 75–82.
- [5] H. Ahmad, A. Akgül, T. A. Khan, P. S. Stanimirovi, and Y. Chu, New Perspective on the Conventional Solutions of the Nonlinear Time-Fractional Partial Differential Equations, Complexity, 2020 (2020), 8829017.
- [6] D. Benson, S. W. Wheatcraft, and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res., 36 (2000), 1403–1412.
- [7] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed. Mineola, NY, USA: Dover, 2001.
- [8] B. A. Carreras, V. E. Lynch, and G. M. Zaslavsky, Anomalous diffusion and exit time distribution of particle travers in plasma turbulence models, Phys. Plasma, 8(8) (2001), 5096–5103.
- [9] M. Dalir and M. Bashour, Applications of fractional calculus, Appl. Math. Sci. 21 (2010), 1021–1032.
- [10] M. Dehghan and A. Saadatmandi, Chebyshev finite difference method for Fredholm integro-differential equation, Int. J. Comput. Math., 85 (2008) 123–130.
- [11] K. Diethelm,The Analysis of Fractional Differential Equations, Berlin, Germany: Springer-Verlag, 2010.
- [12] E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, A new Jacobi operational matrix: An application for solving fractional differential equations, J. Applied Mathematical Modelling, 36 (2012), 4931–4943.
- [13] H. Engler, Similarity solutions for a class of hyperbolic integrodifferential equations, Diff. Int. Equations, 10(5) (1997), 815–840.
- [14] V. J. Ervin and J. P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in Rd, Numer. Meth. Part D, 23 (2007), 256–281.
- [15] Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math., 27 (1990), 309–321.
- [16] R. Gorenflo and F. Mainardi, Random walk models for space-fractional diffusion processes, Frac. Calc. Appl. Anal., 1(2) (1998), 167–191.
- [17] R. M. Hafez and Y. H. Youssri, Shifted Gegenbauer-Gauss collocation method for solving fractional neutral functional-differential equations with proportional delays, Kragujevac Journal of Mathematics, 46(6) (2022), 981– 996.
- [18] M. M. Izadkhah and J. Saberi-Nadjafi, Gegenbauer spectral method for time-fractional convection-diffusion equa- tions with variable coefficients, Mathematical Methods in the Applied Sc., 38(15) (2015), 3183–3194.
- [19] H. Jaleb and H. Adibi, On a novel modification of the Legendre collocation method for solving fractional diffusion equation, Computational Methods for Differential Equations, 10(2) (2019), 480–496.
- [20] J. T. Machado, V. Kiryakova, and F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16(3) (2011), 1140–1153.
- [21] S. T. Maliheh and S. Elyas, Fractional shifted legendre tau method to solve linear and nonlinear variable-order fractional partial differential equations, J. Mathematical Sciences, 00351-8 (2020). DOI: doi.org/10.1007/s40096- 020-00351-8
- [22] J. C. Mason and D. C. Handscomb, Chebyshev polynomials, Chapman and Hall, CRC Press, 2003.
- [23] M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172 (2004), 65–77.
- [24] P. Pandey and J. F. Gómez-Aguilar, On solution of a class of nonlinear variable order fractional reaction-diffusion equation with Mittag-Leffler kernel, Numer. Methods Partial Differential Eq., 22563 (2020), 1–14.
- [25] I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering. London, UK, 1999.
- [26] Y. A. Rossikhin and M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechan- ics:novel trends and recent result, Appl. Mech. Rev., 63 (2010), 010801-1.
- [27] A. Saadatmandi and M. Dehghan, A tau approach for solution of the space fractional diffusion equation, Computers & Math. with Applic., 62 (2011), 1135–1142.
- [28] N. H. Sweilam, A. M. Nagy, and A. A. El-Sayed, Numerical approach for solving space fractional order diffusion equation using shifted Chebyshev polynomials of the fourth kind, Turkish Journal of Mathematics, 40 (2016), 1283–1297.
- [29] N. H. Sweilam, A. M. Nagy, and A. A. El-Sayed, Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation, Chaos, Solitons & Fractals, 75 (2015), 141 - 147.
- [30] G. Szegö, Orthogonal Polynomials, 4th Ed., AMS Colloq. Publ., 1975.
- [31] A. Viguerie, G. Lorenzo,F. Auricchio,D. Baroli, T. J. R. Hughes, A. Patton, A. Reali, T. E. Yankeelov, and Veneziani, Simulating the spread of COVID-19 via a spatially-resolved susceptible-exposed-infected-recovered- diseased (SEIRD) model with heterogeneous diffusion, Appl Math. Lett., 111 (2021), 106617.
- [32] H. Wang and N. Yamamoto, Using a partial differential equation with Google mobility data to predict COVID-19 in Arizona. Mathematical Biosciences and Engineering., 17(5) (2020), 4891–4904.
- [33] Y. H. Youssri, W. M. Abd-Elhameed, and E. H. Doha, Accurate spectral solutions of first- and second-order initial value problems by the ultraspherical wavelets-Gauss collocation method, Applications and Applied Mathematics, 7(3) (2015), 835–851.
- [34] Yu Luchko, M. Rivero, J. J. Trujillo, and M. P. Velasco, Fractional models,non-locality, and complex systems, Comput. Math. Appl., 59(3) (2010), 1048–1056.
- [35] M. A. Zaky, A. S. Hendy, and J. E. Macás-Díaz, Semi-implicit Galerkin–Legendre Spectral Schemes for Non- linear Time-Space Fractional Diffusion–Reaction Equations with Smooth and Nonsmooth Solutions, J. Scientific Computing, 82(13) (2020), 1-27.
|