- [1] M. F. Aghdaei and J. Manafian, Optical soliton wave solutions to the resonant Davey-Stewartson system, Opt. Quant. Elec., 48 (2016), 1-33.
- [2] H. M. Baskonus, H. Bulut, and A. Atangana, On the complex and hyperbolic structures of longitudinal wave equation in a magneto-electro-elastic circular rod, Smart Materials and Structures, 25 (2016), 035022.
- [3] H. M. Baskonus and H. Bulut, New wave behaviors of the system of equations for the ion sound and Langmuir Waves, Waves in Random and Complex Media, (2016) doi.org/10.1080/17455030.2016.1181811.
- [4] H. M. Baskonus and H. Bulut, Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics, Waves in Random and Complex Media, 26 (2016), 201-208.
- [5] H. M. Baskonus, D. A. Koç, and H. Bulut, New travelling wave prototypes to the nonlinear Zakharov-Kuznetsov equation with power law nonlinearity, Nonlinear Sci. Lett. A, 7 (2016), 67-76.
- [6] A. Biswas, M. Ekici, A. Sonmezoglu, F. B. Majid, H. Triki, Q. Zhou, S. P. Moshokoa, and M. Belic, Optical soliton perturbation for Gerdjikov-Ivanov equation by extended trial equation method, Optik 158 (2018), 747-752.
- [7] A. Biswas, M. Ekici, A. Sonmezoglu, H. Triki, Q. Zhou, S. P. Moshokoa, and M. Belic, Dispersive optical solitons with differential group delay by extended trial equation method, Optik, 158 (2018), 790-798.
- [8] H. Bulut and H. M. Baskonus, New complex hyperbolic function solutions for the (2+1)-dimensional dispersive long water-wave system, Math. Comput. Appl., 21 (2016), 6.
- [9] Y. Chen and Q. Wang, Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions solutions to (1+1)-dimensional dispersive long wave equation, Chaos Solitons Fract., 24 (2005), 745-757.
- [10] M. Dehghan and J. Manafian, The solution of the variable coefficients fourth–order parabolic partial differential equations by homotopy perturbation method, Z. Naturforsch, 64a (2009), 420-430.
- [11] M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Num. Meth. Partial Diff.l Eq. J., 26 (2010), 448-479.
- [12] M. Dehghan, J. Manafian, and A. Saadatmandi, Application of semi–analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses, Math. Meth. Appl. Sci., 33 (2010), 1384-1398.
- [13] M. Dehghan, J. Manafian, and A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Int J. Num. Methods Heat Fluid Flow, 21 (2011), 736-753.
- [14] M. Ekici, Q. Zhou, A. Sonmezoglu, J. Manafian, and M. Mirzazadeh, The analytical study of solitons to the nonlinear Schrödinger equation with resonant nonlinearity, Optik, 130 (2017), 378-382.
- [15] M. R. Foroutan, J. Manafian, and A. Ranjbaran, Lump solution and its interaction to (3+1)-D potential-YTSF equation, Nonlinear Dyn., 92 (2018), 2077-2092.
- [16] A. J. M. Jawad, M. J. A. AlShaeer, F. B. Majid, A. Biswas, Q. Zhou, and M. Belic, Optical soliton perturbation with exotic non-Kerr law nonlinearities, Optik, 158 (2018), 1370-1379.
- [17] A. J. M. Jawad, M. D. Petković, and A. Biswas, Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 869-877.
- [18] J. Manafian, On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities, Eur. Phys. J. Plus, 130 (2015), 1-20.
- [19] J. Manafian, Optical soliton solutions for Schrödinger type nonlinear evolutionequations by the tan(ϕ/2)-expansion method, Optik, 127 (2016), 4222-4245.
- [20] J. Manafian and M. F. Aghdaei, M, Zadahmad, Analytic study of sixth-order thin-film equation by tan(ϕ/2)- expansion method, Opt. Quant. Elec., 48 (2016), 1-16.
- [21] J. Manafian, M. Lakestani, and A. Bekir, Comparison between the generalized tanh-coth and the G′/G-expansion methods for solving NPDEs and NODEs, Pramana-J. Phys., 87 (95), (2016) 1-14.
- [22] J. Manafian, M. Lakestani, and A. Bekir, Study of the analytical treatment of the (2+1)-dimensional Zoomeron, the Duffing and the SRLW equations via a new analytical approach, Int. J. Appl. Comput. Math., 2 (2016), 243-268.
- [23] J. Manafian and M. Lakestani, A new analytical approach to solve some the fractional-order partial differential equations, Indian J. Phys., 90 (2016), 1-16.
- [24] J. Manafian and M. Lakestani, Optical solitons with Biswas-Milovic equation for Kerr law nonlinearity, Eur. Phys. J. Plus, 130 (2015), 1-12.
- [25] J. Manafian and M. Lakestani, Application of tan(ϕ/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity, Optik, 127 (2016), 2040-2054.
- [26] J. Manafian and M. Lakestani, Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics, Opt. Quant. Elec., 48 (2016), 1-32.
- [27] J. Manafian and M. Lakestani, New improvement of the expansion methods for solving the generalized Fitzhugh- Nagumo equation with time-dependent coefficients, Int. J. Eng. Math., 2015 (2015), 1-35.
- [28] J. Manafian and M. Lakestani, Abundant soliton solutions for the Kundu Eckhaus equation via tan(ϕ/2)-expansion method, Optik, 127 (2016), 5543-5551.
- [29] J. Manafian and M. Lakestani, Optical soliton solutions for the Gerdjikov Ivanov model via tan(ϕ/2)-expansion method, Optik, 127 (2016), 9603-9620.
- [30] J. Manafian, M. Lakestani, and A. Bekir, Application of a new analytical method for the Richards’ equation, based on the Brooks and Corey model, J. Porous Media, 19(11) (2016), 975-991.
- [31] J. Manafian and M. Lakestani, Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the G′/G-expansion method, Pramana- J. Phys., 130 (2015), 31-52.
- [32] J. Manafian, M. Lakestani, and A. Bekir, Comparison between the generalized tanh-coth and the G′/G-expansion methods for solving NPDE’s and NODE’s, Pramana . J. Phys., 87 (2016), 1-14.
- [33] A. Qawasmeh and M. Alquran, Reliable study of some new fifth-order nonlinear equations by means of G’/G expansion method and rational sine-cosine method, Appl. Math. Sci., 8 (2014), 5985-5994.
- [34] A. M. Wazwaz, A new fifth order nonlinear integrable equation: multiple soliton solutions, Physica Scripta, 83 (2011), 015012.
- [35] A. M. Wazwaz, A new generalized fifth order nonlinear integrable equation, Physica Scripta, 83 (2011), 035003.
- [36] A. M. Wazwaz, Kink solutions for three new fifth order nonlinear equations, Appl. Math. Model., 38 (2014), 110-118.
- [37] A. M. Wazwaz, Couplings of a fifth order nonlinear integrable equation: Multiple kink solutions, Computers Fluids, 84 (2013), 97-99.
- [38] A. M. Wazwaz and A. Ebaid, A study on couplings of the fifth-order integrable Sawada-Kotera and Lax equations, Rom. J. Phys., 59 (2014), 454-465.
- [39] X. Zhao, L. Wang, and W. Sun, The repeated homogeneous balance method and its applications to nonlinear partial differential equations, Chaos Solitons Fract., 28 (2006), 448-453.
- [40] Q. Zhou, M. Ekici, A. Sonmezoglu, J. Manafian, S. Khaleghizadeh, and M. Mirzazadeh, Exact solitary wave solutions to the generalized Fisher equation, Optik, 127 (2016), 12085-12092.
|