- [1] A. Babakhani and Q. Al-Mdallal,On the existence of positive solutions for a non-autonomous fractional differential equation with integral boundary conditions, Computational Methods for Differential Equations, University of Tabriz, 9(1) (2020), 36-51.
- [2] P. L. Butzer and U. Westphal, An introduction to fractional calculus. In: Applications of Fractional Calculus in Physics, World Scientific (2000), 1-85.
- [3] T. Chen, Secure telecommunications data transmission, Google Patents, US Patent 6,058,187 (2000).
- [4] D. W. Faucher, D. N. Heer, M. M Kaplan, and D. P. Maher, Secure telecommunications, Google Patents, US Patent 5,455,861 (1995).
- [5] N. Goswami and B. Shanmukha, A Mathematical Analysis of Zika Virus Transmission with Optimal Control Strategies, Computational Methods for Differential Equations, University of Tabriz, 9(1) (2020), 117-145.
- [6] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific (2000).
- [7] G. Hu, Generating hyperchaotic attractors with three positive lyapunov exponents via state feedback control, Inter- national Journal of Bifurcation and Chaos , 19(02) (2009), 651-660.
- [8] O. I. Khalaf , G. M. Abdulsahib, H. D. Kasmaei, and K. A. Ogudo, A new algorithm on application of blockchain technology in live stream video transmissions and telecommunications, IGI Global, 16(1) (2020), 16-32.
- [9] A. Khan, L.S. Jahanzaib, and P. Trikha, Secure Communication: Using Parallel Synchronization Technique On Novel Fractional Order Chaotic System, IFAC-PapersOnLine , Elsevier, 53(1) (2020), 307-312.
- [10] A. Khan, L. S. Jahanzaib, T. Khan, and P. Trikha, Secure communication: Using fractional matrix projective combination synchronization, AIP Conference Proceedings, AIP, 2253(1) (2020), 020009.
- [11] A. Khan, L. S. Jahanzaib, P. Trikha, and T. Khan,Changing Dynamics of the First, Second & Third Approximates of the Exponential Chaotic System & their Synchronization , Journal of Vibration Testing and System Dynamics 4(4) (2020), 337-361.
- [12] A. Khan, L. S. Jahanzaib, and P. Trikha,Analysis of a novel 3-d fractional order chaotic system, In: ICPECA , IEEE, (2019), 1-6.
- [13] A. Khan, P. Trikha, and L. S. Jahanzaib, Dislocated hybrid synchronization via. tracking control & parameter estimation methods with application, International Journal of Modelling and Simulation , Taylor & Francis (2020), 1-11.
- [14] A. Khan and P. Trikha,Compound difference anti-synchronization between chaotic systems of integer and fractional order, S.N.Applied Sciences, Springer,1(7) (2019), 757.
- [15] A. Khan, P. Trikha, and L. S. Jahanaib,Secure Communication: Using Synchronization On A Novel Fractional Order Chaotic System, In: ICPECA, IEEE, (2019), 1-5.
- [16] A. Khan, P. Trikha, and L. S. Jahanaib, Double Compound Combination Anti-synchronization In A Non Identical Fractional Order Hyper Chaotic System, Journal of Basic and Applied Engineering Research, (2019), 437-443.
- [17] A. Khan, L.S. Jahanaib, and P. Trikha, Dual Combination Combination Anti-synchronization of Non-identical Fractional Order Chaotic System With Different Dimension Using Scaling Matrix, Journal of Basic and Applied Engineering Research, (2019), 431-436.
- [18] A. Khan, L. S. Jahanzaib, and P. Trikha, Fractional Inverse Matrix Projective Combination Synchronization with Application in Secure Communication,in: Proceedings of International Conference on Artificial Intelligence and Applications, Springer, (2020), 93-101.
- [19] A. Khan and P. Trikha, Study of earths changing polarity using compound difference synchronization, GEM- International Journal on Geomathematics ,11(1) Springer(2020), 7.
- [20] C. Li, X. Liao, and J. Yu, Synchronization of fractional order chaotic systems, Physical Review E, 68(6) (2003), 067203.
- [21] S. Liu and F. Zhang, Complex function projective synchronization of complex chaotic system and its applications in secure communication, Non linear Dynamics, 76(2) (2014), 1087-1097.
- [22] Y. Liu, Y. Takiguchi, P. Davis, T. Aida, S. Saito, and J. Liu, Experimental observation of complete chaos synchronization in semiconductor lasers, Applied Physics Letters, 80(23) (2002), 4306-4308.
- [23] J. G. Lu, Chaotic dynamics of the fractional order lu system and its synchronization, Physics Letters A, 354(4) (2006), 305-311.
- [24] A. C. Luo, A theory for synchronization of dynamical systems, Communications in Nonlinear Science and Nu- merical Simulations,14(5) (2009), 1901-1951.
- [25] E. E. Mahmoud, L. S. Jahanzaib, P. Trikha, and M. H. Alkinani, Anti-synchronized quad-compound combination among parallel systems of fractional chaotic system with application, Alexandria Engineering Journal, Elsevier, (2020).
- [26] M. A. Moghaddam, Y. E. Tabriz, and M. Lakestani, Solving fractional optimal control problems using Genocchi polynomials, Computational Methods for Differential Equations,University of Tabriz, 9(1) (2020), 79-93.
- [27] S. Soradi-Zeid, Solving a class of fractional optimal control problems via a new efficient and accurate method, Computational Methods for Differential Equations,University of Tabriz, 9(2) (2020), 480-492.
- [28] J. Sun, N. Li, and J. Fang, Combination-Combination Projective Synchronization of Multiple Chaotic Systems Using Sliding Mode Control., Advances in Mathematical Physics, Hindawi (2018).
- [29] P. Trikha and L. S. Jahanzaib, Secure Communication: Using Double Compound-Combination Hybrid Synchro- nization,in: Proceedings of International Conference on Artificial Intelligence and Applications, Springer, (2020), 81-91.
- [30] P. Trikha and L .S. Jahanzaib, Dynamical analysis of a novel 5-d hyper-chaotic system with no equilibrium point and its application in secure communication, Differential Geometry–Dynamical Systems, 22 (2020).
- [31] V. K. Yadav, G. Prasad, M. Srivastava, and S. Das, Triple Compound Synchronization Among Eight Chaotic Sys- tems with External Disturbances via Nonlinear Approach, Differential Equations and Dynamical Systems,Springer, (2019).
|