- [1] C. Avramescu, A fixed point theorem for multivalued mapping, Electron. J. Qual. Theory Differ. Equ., 2004 (2004), 1–10.
- [2] C. Avramescu and C. Vladimirescu, Fixed point theorems of Krasnoselskii type in a space of continuous functions, Fixed Point Theory., 5 (2004), 181–195.
- [3] R. J. Aumann, Integrals of set valued functions, J. Math. Anal. Appl., 12 (1965), 1–12.
- [4] C. S. Barroso, Krasnoselskii’s fixed point theorem for weakly continuous maps, Nonlinear Anal., 55 (2003), 25–31.
- [5] C. S. Barroso and E. V. Teixeira, A topological and geometric approach to fixed points results for sum of operators and applications, Nonlinear Anal., 60 (2005), 625–650.
- [6] I. Basoc and T. Cardinali, A hybrid nonlinear alternative theorem and some hybrid fixed point theorems for multimaps, J. Fixed Point Theory Appl., 17 (2015), 413–424.
- [7] M. Biondini and T. Cardinali, Existence of Solutions for a Nonlinear Integral Equation via a Hybrid Fixed Point Theorem Results. Math., 71 (2017), 1259–1276.
- [8] M. Boriceanu, Krasnoselkii-type theorems for multivalued operators, Fixed Point Theory., 9 (2008), 35–45.
- [9] T.A. Burton and C. Kirk, A fixed point theorem of Krasnoselskii Schaefer type, Math. Nachr., 189 (1998), 23–31.
- [10] B. C. Dhage, Multi-valued mappings and fixed points I, Nonlinear Funct. Anal. Appl., 10 (3) (2005), 359–378.
- [11] B. C. Dhage, Multi-valued mappings and fixed points II, Tamkang journal of mathematics., 37 (1) (2006), 27–46.
- [12] B. C. Dhage, Multi-valued operators and fixed point theorems in banach algebras I, Taiwanese journal of mathe- matics., 10 (4) (2006), 1025–1045.
- [13] S. Djebali, L. G´orniewicz, and A, Ouahab, Solution Sets for Differential Equations and Inclusions, De Gruyter, Berlin, Germany, 2013.
- [14] S. Djebali and Z. Sahnoun, Nonlinear alternatives of Schauder and Krasnoselskii types with applications to Ham- merstein integral equations in L1 spaces, J. Differential Equations., 249 (2010), 2061–2075.
- [15] J. Garcia-Falset, Existence of fixed points for the sum of two operators, Math. Nachr., 12 (2010), 1726–1757.
- [16] J. Garcia-Falset, K. Latrach, E. Moreno-Ga´lvez, and M. A. Taoudi, Schaefer- Krasnoselskii fixed points theorems using a usual measure of weak noncompactness, J. Differential Equations., 352 (2012), 3436–3452
- [17] J. Garcia-Falset and O. Mun˜iz-Pe´rez, Fixed point theory for 1-set contractive and pseudocontractive mappings, Appl. Math. Comput., 219 (2013), 6843–6855.
- [18] B. D. Gelman, A Hybrid Fixed-Point Theorem for Set-Valued Maps, Mathematical Notes., 101 (6) (2017), 951– 959.
- [19] J. R. Graef, J. Henderson, and A. Ouahab, Multivalued versions of a Krasnoselskii-type fixed point theorem, J. Fixed Point Theory Appl., (2016).
- [20] L. G´orniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Acad. Pub- lishers, Dordrecht, 1999.
- [21] S. Hu, N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I, Kluwer Aca- demic, 1997.
- [22] M. A. Krasnoselskii, Some problems of nonlinear analysis, Amer. Math. Soc. Transl. Ser., 10 (2) (1958), 345–409.
- [23] D. ORegan, Fixed-point theory for the sum of two operators, Appl. Math. Lett., 9 (1996), 1–8.
- [24] A. Ouahab, Some perov’s and krasnoselskii type fixed point results and application, Communications in Applied Analysis., 19 (2015), 623–642.
- [25] A. Petru¸sel, Multivalued operators and fixed points. Pure Math. Appl., 9 (1998), 165–170.
- [26] K. Przes-lawski and L. E. Rybin´ski, Michael selection theorem under weak lower semicontinuity assumption, Proc. Amer. Math. Soc., 109 (1990), 537–543.
|