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Abstract

..

In this paper, we prove the existence of solution of two nonlinear integral inclusions by using generalization of

Krasnoselskii fixed point theorem for set-valued mappings. As an application we prove the existence of solution
of the boundary valued problem of ordinary differential inclusion.
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1. Introduction

A fundamental tool for studying problems x = A(x) +B(x) is the well-known Krasnoselskii fixed point theorem [22].
This result combined the topological Schauder fixed point theorem with the geometrical Banach fixed point theorem.
Because of its importance for mathematical theory, it has been extended in various directions, see [2, 4, 5, 14–17] and
the references therein.
Krasnoselskii fixed point theorem plays a key role in the study of the existence of continuous solutions for perturbed
nonlinear differential and the mixed type of integral equations, see [7, 15, 17, 18].
The fixed point theory for set-valued mappings is an important topic of set-valued analysis. Several well-known fixed
point theorems for single-valued mappings such as Banach contraction and Schauder fixed point theorems have been
extended to set-valued mappings in Banach spaces. Recently, set-valued version of Krasnoselskii’s fixed point theorem
has been stated by Boriceanu [8] and Petruşel [25] and subsequent extensions have been derived by many authors, see
[1, 6, 9–11, 19, 23].
Graef et al. [19] presented a Krasnoselskii-type fixed point theorem for set-valued mappings by using the measure of
noncompactness combined with an approximation method. Also, Basoc and Cardinali [6] obtained two Krasnoselskii-
Sadowskii-type fixed point theorems for set-valued mappings. They used the classic Covitz-Nadler fixed point theorem
and a fixed point result for condensing set-valued mappings.
Set-valued version of Krasnoselskiis fixed point theorem has nice applications to perturbed nonlinear differential
inclusions and integral inclusion see, [12, 24]. Dhage [11] proved the existence results for a certain functional integral
inclusion under mixed Lipschitz and Caratheodory conditions on C([0, 1];R). In this paper, we prove the existence of
solution for two nonlinear integral inclusions on C([0, b];Rn) by using two fixed point theorems have been presented
by Graef et al. and Basoc and Cardinali.
As an application of the integral inclusion, we prove existence of solution for the nonlinear functional point boundary
valued problem of ordinary differential inclusion.
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2. Preliminaries

In this section, we introduce some definitions and facts which will be used in the sequel.
Let X be a Banach space we denote by P(X) and Pb(X) the family of all nonempty subsets of X and the family of
all nonempty bounded subsets of X, respectively. Also, we denote by Pcp(X) and Pcv(X) the family of all nonempty
compact subsets of X and the family of all nonempty convex subsets of X, respectively.

Definition 2.1. Let X and Y be two Banach spaces. A set-valued map F : X → P(Y ) is said to be:

(i) upper semi-continuous, if for each closed set B ⊆ Y , F−(B) = {x ∈ X : F (x) ∩B ̸= ∅} is closed in X.
(ii) lower semi-continuous if for each open set V ⊆ Y , F−(V ) is an open set in X.

(iii) continuous if it is both upper and lower semi-continuous.
(iv) weakly lower semi-continuous at x0 ∈ X (see [26]) if for every ε > 0 and for every neighborhood V of x0 there

is a point x1 ∈ V such that for every z ∈ F (x1) there is a neighborhood Uz of x0 such that

z ∈ ∩{F (x) + εB(0, 1) : x ∈ Uz}

where B(0, 1) = {x ∈ X : ∥x∥ < 1}.

Notice that every lower semi-continuous map is weakly lower semi-continuous.
Let A ∈ Pb(X) then the Kuratowski measure of non-compactness of A ∈ Pb(X) is defined by γ(A) = inf{ε > 0 : A =
∪n
i=1Ai,diam(Ai) ≤ ε}, where diam(A) = sup{∥x− y∥ : x, y ∈ A}.

Definition 2.2. [20] Let X be a Banach space. A bounded set-valued map F : X → P(X) is said to be

(i) compact if F (A) is compact for each A ∈ Pb(X).
(ii) k-set contraction if there exists k ∈ [0, 1) such that γ(F (A)) ≤ kγ(A) for each A ∈ Pb(X).

(iii) condensing if γ(F (A)) < γ(A) for each A ∈ Pb(X) with γ(A) > 0.

Let (Ω,Σ, µ) be a measurable space and X a separable Banach space. Let F : Ω → P(X) be a set-valued map. We
introduce the set

SF = {f(.) ∈ L1(Ω, X) : f(ω) ∈ F (ω) µ− a.e.}.
If Gr(F ) = {(ω, x) ∈ Ω×X : x ∈ F (ω)} ∈ Σ×B(X), the set SF is nonempty if and only if infx∈F (ω) ∥x∥ ∈ L1(Ω,R),
where B(X) denotes the family of all Borel subsets of X. Having this set, we can now define an integral for the
set-valued map F (.). So we set ∫

Ω

F (ω)dµ = {
∫
Ω

f(ω)dµ : f(.) ∈ SF },

where
∫
Ω
f(ω)dµ is understood as a Bochner integral. This set-valued integral was introduced by Aumann [3] as the

generalization of the integral of a point valued function and of the Minkowski sum of sets.

Definition 2.3. [21] Let X be a Banach space, J = [0, b] ⊂ R and A be a subset of J×X. A is called L⊗B measurable
if A belongs to the σ-algebra generated by all sets of the form I ×D where I is Lebesgue measurable in J and D is
Borel measurable in X.

Definition 2.4. [21] A map F : J×Rn → P(Rn) is said to be integrably bounded if there exists an integrable function
m ∈ L1(J ;R+) such that ∥y∥ ≤ m(t) for every x ∈ Rn, t ∈ J and y ∈ F (t, x).

Definition 2.5. [21] A set-valued map F : J × Rn → P(Rn) is said to be Caratheodory map provided

(i) F (t, .) : Rn → P(Rn) is upper semi-continuous for a.e. t ∈ J ; and
(ii) F (., x) : J → P(Rn) is measurable for every x ∈ Rn.

Let C(J ;Rn) denotes the Banach space of all continuous functions y : J → Rn equipped with a standard norm
∥y∥∞ := supt∈J ∥y(t)∥. Let L1(J ;Rn) be the Banach space of measurable functions y : J → Rn which are Lebesgue

integrable and normed by ∥y∥L1 =
∫ b

0
∥y(t)∥dt.
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Lemma 2.6. [13] Let X be a Banach space, F : J → Pcp,cv(X) be an Caratheodory set-valued map with SF,y ̸= ∅ and
Γ be a linear continuous mapping from L1(J ;X) into C(J ;X). Then the operator

Γ ◦ SF : C(J ;X) −→ Pcp,cv(C(J ;X))

y 7−→ (Γ ◦ SF )(y) := Γ(SF,y)

is a closed graph operator in C(J ;X) × C(J ;X)

3. Main results

In this section, first we present as an application of Theorem 7.3 of [19], the study of the following nonlinear integral
inclusion:

x(t) ∈ g(t, x(t)) +

∫ t

0

F (s, x(s))ds

We begin by recalling the following definition.

Definition 3.1. [17] A mapping A : D(A) ⊆ X → X is said to be ϕ-expansive if there exists a function ϕ : [0,∞) →
[0,∞) such that ∥Ax−Ay∥ ≥ ϕ(∥x− y∥) for all x, y ∈ D(A), and ϕ satisfies the following conditions:

(i) ϕ(0) = 0;
(ii) ϕ(r) > 0 for r > 0;

(iii) either ϕ is continuous or ϕ is nondecreasing.

In what follows, for any map B, we denote the image of B by R(B). We also need the following lemma.

Lemma 3.2. [17] Let M be a nonempty bounded closed subset of a Banach space X and let B : M → X be a
ϕ-expansive mapping. Then B is injective and the mapping B−1 : R(B) →M is uniformly continuous.

In [19], Graef et al. proved the following theorem:

Theorem 3.3. [19] Let X be a Banach space, M be a closed bounded convex subset of X. Suppose that A : M →
Pcp,cv(X) is an upper semi-continuous set-valued mapping, and let B : M → X is a continuous mapping such that

(i) A is compact;
(ii) B is k-set contractive;

(iii) (I −B)−1 : R(I −B) →M exists and is uniformly continuous;
(iv) A(M) +B(M) ⊂M.

Then there exists x ∈M such that x ∈ A(x) +B(x).

We will now study the existence of solutions for the nonlinear integral inclusion

x(t) ∈ g(t, x(t)) +

∫ t

0

F (s, x(s))ds (3.1)

on C(J ;Rn), where the maps F and g satisfy the following conditions:

(E1) The map g : J×Rn → Rn is uniformly continuous on the bounded subsets of J×X, g(t, .) is a k-set-contraction
mapping and let Mr := max{∥g(t, x)∥ : ∥x∥ ≤ r , t ∈ J},

(E2) I − g(t, .) : Rn −→ Rn is ϕ-expansive,
(E3) The set-valued map F : J ×Rn → Pcp,cv(Rn) is a Caratheodory and there exist functions m ∈ L1(J ;R+) and

an increasing function ψ : R+ −→ R+ such that ∥F (t, x)∥ ≤ m(t)ψ(∥x∥).

(E4) limr→∞
∥m∥L1ψ(r) +Mr

r
< 1.

Theorem 3.4. Equation (3.1) has a solution in C(J ;Rn) whenever the conditions (E1)- (E4) are satisfied.
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Proof. We define
A : C(J ;Rn) → P(C(J ;Rn)),

x 7→ A(x)(t) = {h(t) ∈ C(J ;Rn) : h(t) =

∫ t

0

υ(s)ds}

where υ ∈ SF,x = {υ ∈ L1(J ;Rn) : υ(t) ∈ F (t, x(t)) a.e t ∈ J}. Since F is a Caratheodory map, the set SF,x is
nonempty, and

B : C(J ;Rn) → C(J ;Rn)

x 7→ B(x)(t) = g(t, x(t)).

Our task consists into see that A+B has a fixed point. First, notice that A(x) is convex for each x ∈ C(J ;Rn). This
follows from the convexity of SF,x since F has convex values.
Step 1. We prove that A has a closed graph. Let hn ∈ A(xn) be such that xn → x∗ and hn → h∗. We prove that
h∗ ∈ A(x∗). Since hn ∈ A(xn) so there exists υn ∈ SF,xn such that

hn(t) =

∫ t

0

υn(s)ds.

Consider the linear continuous operator
Γ : L1(J ;Rn) → C(J ;Rn)

υ 7−→ Γ(υ)(t) =

∫ t

0

υ(s)ds.

By Lemma 6.155 of [13], Γ ◦ SF has a closed graph, Since

hn(.) ∈ Γ(SF,xn
),

then (x∗, h∗) ∈ Gr(Γ ◦ SF ). Hence, there exists υ∗ ∈ SF,x∗ such that

h∗(t) =

∫ t

0

υ∗(s)ds t ∈ J,

for some υ∗ ∈ SF,x∗ . Therefore, A has a closed graph and so A is closed valued.
Step 2. A maps bounded sets into bounded sets in C(J ;Rn). Indeed, it is enough to show that there exists a positive

constant l such that for each h ∈ A(x), x ∈ Bq = {y ∈ C(J ;Rn) : ∥y∥ ≤ q} one has ∥h∥ ≤ l. If h ∈ A(x), then there
exists υ ∈ SF,x such that for each t ∈ J ; we have

h(t) =

∫ t

0

υ(s)ds.

By (E3), we have for each t ∈ J

∥h(t)∥ ≤
∫ t

0

∥υ(s)∥ds ≤ ψ(q)

∫ t

0

m(s)ds = l.

Then for each h ∈ A(Bq); we have ∥h∥∞ ≤ l.
Step 3. A maps bounded sets into equicontinuous sets of C(J ;Rn). Let τ1, τ2 ∈ J, τ1 < τ2 and Bq = {y ∈
C(J ;Rn) : ∥y∥ ≤ q} be a bounded set of C(J ;Rn). For each x ∈ Bq and h ∈ A(x), there exists υ ∈ SF,x such
that

h(t) =

∫ t

0

υ(s)ds t ∈ J.

Thus,

∥h(τ2) − h(τ1)∥ ≤
∫ τ2

τ1

∥υ(s)∥ds ≤ ψ(q)

∫ τ2

τ1

m(s)ds.

As |τ2−τ1| → 0, the right-hand side of the above inequality tends to zero. As a consequence of step 1, 2 and 3 together
with the Ascoli-Arzela theorem, we conclude that A : C(J ;Rn) → Pcp,cv(C(J ;Rn)) is a compact set-valued map and
upper semi-continuous map.
On the other hand, since g is uniformly continuous on the bounded subsets of J × Rn and g(t, .) is k-set-contraction,
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we easily obtain that B is a continuous k-set-contraction mapping on J × Rn. Also, by Theorem 4.4 of [17], we see
that I −B is a ϕ-expansive operator on C(J ;Rn).

Finally, we show that there exists r0 > 0 such that A(Br0(0)) +B(Br0(0)) ⊆ Br0(0). Otherwise, for every r > 0 we
can find ur, vr ∈ Br0(0) and h ∈ A(ur) such that ∥h+Bvr∥∞ > r. This means that

1

r
∥h+Bvr∥∞ > 1.

Also there exists υ ∈ SF,ur such that

h(t) =

∫ t

0

υ(s)ds.

Then we may assume that

|h(t) +Bvr(t)| ≤ Mr +

∫ t

0

∥υ(s)∥ds

≤ Mr +

∫ b

0

m1(s)ψ(r)ds ≤Mr + ∥m∥L1ψ(r).

Consequently,

lim inf
r→∞

1

r
∥h+Bvr∥∞ ≤ lim inf

r→∞

Mr + ∥m∥L1ψ(r)

r
< 1.

This is a contradiction. Thus, by Theorem 3.3, there exists x ∈ C(J,Rn) such that x ∈ A(x)+B(x). Therefore integral
inclusion (3.1) has a solution. �

For the rest of this section, we prove the existence solution for the following nonlinear integral inclusion:

x(t) ∈ p(t) +

∫ α(t)

0

k1(t, s)F (s, x(η(s)))ds+

∫ β(t)

0

k2(t, s)G(s, x(θ(s)))ds.

For this purpose, we need the following theorem proved by Basoc and Cardinali [6].

Theorem 3.5. Let X be a Banach space and M be a closed bounded convex subset of X. Suppose that A,B : M →
Pcp,cv(X) are set-valued mappings such that

(i) A is weakly lower semi-continuous;
(ii) A maps bounded sets into relatively compact sets;

(iii) B is condensing;
(iv) B has closed graph;
(v) B(M) +A(M) ⊂M.

Then there exists x ∈M such that x ∈ A(x) +B(x).

We consider the following nonlinear integral inclusion:

x(t) ∈ p(t) +

∫ α(t)

0

k1(t, s)F (s, x(η(s)))ds+

∫ β(t)

0

k2(t, s)G(s, x(θ(s)))ds. (3.2)

where p : J → Rn, k1, k2 : J × J → R, F,G : J × Rn → P(Rn) and α, β, η, θ : J → J.
We consider the following hypotheses in the sequel.

(H1) The functions α, β, η, θ : J → J are continuous.
(H2) The function p : J → Rn is continuous.
(H3) The functions k1, k2 are continuous on J × J with K1 = maxt,s∈J |k1(t, s)| and K2 = maxt,s∈J |k2(t, s)|.
(H4) the set-valued map F : J × Rn → Pcp(Rn) satisfying

(i) F is an integrably bounded. i.e. there exist functions m1 ∈ L1(J ;R+) such that ∥y∥ ≤ m1(t) for every
x ∈ Rn, t ∈ J and y ∈ F (t, x).
(ii) the mapping (t, x) → F (t, x) is L⊗B measurable;
(iii) the mapping x→ F (t, x) is lower semi-continuous for a.e. t ∈ J .
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(H5) The set-valued map G : J × Rn → Pcp,cv(Rn) is a Caratheodory and there exist two functions m2, ψ2 ∈
L1(J ;R+) and an increasing function ψ2 : R+ −→ R+ such that

∥G(t, x)∥ ≤ m2(t)ψ2(∥x∥) a.e t ∈ J,

for all x ∈ Rn.

(H6) limr→∞
∥p∥ +K1∥m1∥L1 +K2∥m2∥L1ψ2(r)

r
< 1.

Notice that Dhage in [11] proved the existence results for above nonlinear integral inclusion under mixed Lipschitz
and Caratheodory conditions.

Theorem 3.6. Equation (3.2) has a solution in C(J ;Rn) whenever the conditions (H1)- (H6) are satisfied.

Proof. First, condition (H4) and (H5) imply by Lemma 6.143 and Lemma 6.138 of [13], there exists a continuous map
f : C(J ;Rn) → L1(J ;Rn) such that (fx)(t) ∈ F (t, x(η(t))) for all t ∈ J and x ∈ C(J ;Rn). Now, we define

A : C(J ;Rn) → C(J ;Rn)

x 7→ A(x)(t) =

∫ α(t)

0

k1(t, s)(fx)(s)ds.

and

B : C(J ;Rn) → P(C(J ;Rn))

x 7→ B(x)(t) = {h(t) ∈ C(J ;Rn) : h(t) = p(t) +

∫ β(t)

0

k2(t, s)υ(s)ds, υ ∈ SG,x},

where SG,x = {υ ∈ L1(J ;Rn) : υ(t) ∈ G(t, x(θ(t))) a.e t ∈ J}. Since G is a Caratheodory map, the set SG,x is
nonempty. Then solution of equation (3.2) is equivalent to the operator inclusion x(t) ∈ Ax(t) +Bx(t) for each t ∈ J.
We will show that the set-valued operators A and B satisfy all the conditions of Theorem 3.5.
First, notice that B(x) is convex for each x ∈ C(J ;Rn). This follows from the convexity of SG,x, since G has convex
values.
Step 1. We prove that B has a closed graph. Let hn ∈ B(xn) be such that xn → x∗ and hn → h∗. We shall prove
that h∗ ∈ B(x∗). Since hn ∈ B(xn) so there exists υn ∈ SG,xn such that

hn(t) = p(t) +

∫ β(t)

0

k2(t, s)υn(s)ds.

Consider the linear continuous operator

Γ : L1(J ;Rn) → C(J ;Rn)

υ 7−→ Γ(υ)(t) =

∫ β(t)

0

k2(t, s)υ(s)ds.

Since

hn(.) − p(.) ∈ Γ(SG,xn),

by Lemma 6.155 of [13], Γ ◦ SG has a closed graph, then (x∗, h∗ − p) ∈ Gr(Γ ◦ SG). Hence, there exists υ∗ ∈ SG,x∗

such that

h∗(t) = p(t) +

∫ β(t)

0

k2(t, s)υ∗(s)ds t ∈ J

for some υ∗ ∈ SG,x∗ . Therefore, B has a closed graph and so B is closed valued.
Step 2. B maps bounded sets into bounded sets in C(J ;Rn). Indeed, it is enough to show that there exists a positive
constant l such that for each h ∈ B(x), x ∈ Bq = {x ∈ C(J ;Rn) : ∥x∥ ≤ q} one has ∥h∥ ≤ l. If h ∈ B(x), then there
exists υ ∈ SG,x such that for each t ∈ J , we have

h(t) = p(t) +

∫ β(t)

0

k2(t, s)υ(s)ds.
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Since p is continuous then there exists ρ such that ∥p∥ ≤ ρ. By (H3), we have for each t ∈ J

∥h(t)∥ ≤ ρ+

∫ β(t)

0

∥υ(s)∥ds ≤ ρ+ ψ2(q)

∫ b

0

K2m2(s)ds = l.

Then for each h ∈ B(Bq), we have ∥h∥∞ ≤ l.
Step 3. B maps bounded sets into equicontinuous sets of C(J ;Rn). Let τ1, τ2 ∈ J ; τ1 < τ2 and Bq = {y ∈
C(J ;Rn) : ∥y∥ ≤ q} be a bounded set of C(J ;Rn). For each x ∈ Bq and h ∈ B(x), there exists υ ∈ SG,x such that

h(t) =

∫ β(t)

0

k2(t, s)υ(s)ds t ∈ J.

Thus,

∥h(τ2) − h(τ1)∥ = ∥p(τ2) +

∫ β(τ2)

0

k2(τ2, s)υ(s)ds− p(τ1) −
∫ β(τ1)

0

k2(τ1, s)υ(s)ds∥

≤ ∥p(τ2) − p(τ1)∥ + ∥
∫ β(τ2)

0

k2(τ2, s)υ(s)ds−
∫ β(τ2)

0

k2(τ1, s)υ(s)ds∥

+ ∥
∫ β(τ2)

0

k2(τ1, s)υ(s)ds−
∫ β(τ1)

0

k2(τ1, s)υ(s)ds∥

≤ ∥p(τ2) − p(τ1)∥ +

∫ β(τ2)

0

|k2(τ2, s) − k2(τ1, s)|∥υ(s)∥ds

+

∫ β(τ2)

β(τ1)

|k2(τ1, s)|∥υ(s)∥ds

≤ ∥p(τ2) − p(τ1)∥ + ψ2(q)

∫ 1

0

|k2(τ2, s) − k2(τ1, s)|m2(s)ds

+ ψ2(q)

∫ β(τ2)

β(τ1)

K2m2(s)ds.

As |τ2 − τ1| → 0, the right-hand side of the above inequality tends to zero. As a consequence of step 1, 2 and 3
together with the Ascoli-Arzela theorem, we conclude that B : C(J ;Rn) → Pcp,cv(C(J ;Rn)) is compact and upper
semi-continuous map.
On the other hand we prove that A is compact and continuous map. by a similar proof as that of step 2 and 3 for B,
we conclude that A is compact map. Now we prove that A is a continuous map. Let {xn} be a sequence such that
xn → x in C(J,Rn). Then

∥(Axn)(t) − (Ax)(t)∥ = ∥
∫ α(t)

0

k1(t, s)(fxn)(s) −
∫ α(t)

0

k1(t, s)(fx)(s)∥

≤
∫ α(t)

0

|k1(t, s)|∥(fxn)(s) − (fx)(s)∥

≤ K1

∫ b

0

∥(fxn)(s) − (fx)(s)∥.

Since f is continuous then

∥Axn −Ax∥∞ ≤ K1∥fxn − fx∥L1 → 0,

as n→ ∞. So A is continuous.
Finally, let us show that there exists r0 > 0 such that A(Br0(0)) +B(Br0(0)) ⊆ Br0(0). Otherwise, for every r > 0 we
can find ur, vr ∈ Br0(0) and h ∈ B(vr) such that ∥A(ur) + h∥∞ > r. This means that

1

r
∥A(ur) + h∥∞ > 1.



222 Z. SOLTANI

Also there exists υ ∈ SG,vr such that

h(t) = p(t) +

∫ β(t)

0

k2(t, s)υ(s)ds.

Then we may assume that

∥(Aur)(t) + h(t)∥ ≤
∫ α(t)

0

|k1(t, s)|∥(fur)(s)∥ds+ p(t) +

∫ t

0

|k2(t, s)|∥υ(s)∥ds

≤ K1

∫ b

0

m1(s)ds+ ∥p∥ +K2

∫ b

0

m2(s)ψ2(r)ds

≤ K1∥m1∥L1 + ∥p∥ +K2∥m2∥L1ψ2(r).

Consequently,

lim inf
r→∞

1

r
∥A(ur) + h∥∞ ≤ lim inf

r→∞

∥p∥ +K1∥m1∥L1 +K2∥m2∥L1ψ2(r)

r
< 1.

This is a contradiction. Therefore A+B satisfies to condition Theorem 3.5, then there exists x ∈ C(J,Rn) such that
x ∈ A(x) +B(x). So integral inclusion (3.2) has a solution.

�

As an application of the integral inclusion (3.2), we consider the following the boundary valued problem of ordinary
differential inclusion,

x′′(t) ∈ F (t, x(η(t))) +G(t, x(θ(t))) a.e t ∈ J,

x(0) = x(1) =

n︷ ︸︸ ︷
(0, ..., 0)

(3.3)

where F,G : J × Rn → P(Rn) and η, θ : J → J are continuous.

Theorem 3.7. Assume that the hypotheses (H4) and (H5) hold. Also suppose

lim
r→∞

∥m1∥L1 + ∥m2∥L1ψ2(r)

r
< 1.

Then problem (3.3) has a solution on J .

Proof. First, similar proof of Theorem 5.1 of [17], problem (3.3) is reformulated as a nonlinear integral inclusion

x(t) ∈
∫ 1

0

k(t, s)F (s, x(η(s)))ds+

∫ 1

0

k(t, s)G(s, x(θ(s)))ds, (3.4)

where k(t, s) is the Greens function of (3.3) that is the solution to the linear homogeneous equation with boundary
condition g′′(t) = 0 a.e t ∈ J,

g(0) = g(1) = 0,
(3.5)

where g ∈ C(J,R). In this case, we have |k(t, s)| ≤ 1
4 . Therefore, S satisfies the condition Theorem 3.6 with k1(t, s) =

k2(t, s) = k(t, s), α(t) = β(t) = 1 and p(t) = 0 so nonlinear integral inclusion (3.4) has a solution. Then problem (3.3)
has a solution on J .

�
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Conclusion

In this work, we successfully apply two fixed point theorems have been presented by Graef et al. and Basoc and
Cardinali to obtain the solution of two nonlinear integral inclusions on C([0, b];Rn). As an application of these integral
inclusions, the existence of solution of the boundary valued problem of ordinary differential inclusion is proved. Notice
that, the existence of solution of the two nonlinear integral inclusions on C([0, b];X), where X is Banach spaces, could
be studied in the future researches
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