- [1] Y. Y. Bagderina and A. P. Chupakhin, Invariant and Partially Invariant Solutions of The GreenNaghdi Equations, Journal of Applied Mechanics and Technical Physics, 46(6) (2005), 791799.
- [2] R. M. Chen, G. Gui, and Y. Liu, On a shallow-water approximation to the GreenNaghdi equa- tions with the Coriolis effect, Advances in Mathematics, 340 (2018), 106137.
- [3] A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012), L05602.
- [4] R. C. Ertekin, M. Hayatdavoodi, and J.W. Kim, On some solitary and cnoidal wave diffraction solutions of the GreenNaghdi equations , Applied Ocean Research, 47 (2014), 125137.
- [5] W. Gao, G. Yel, H. M. Baskonus, and C. Cattani, Complex solitons in the conformable (2+1)- dimensional Ablowitz-Kaup-Newell-Segur equation, AIMS Mathematics, 5(1) (2020), 507521.
- [6] W. Gao, H. F. Ismael,H. Bulut, and H. M. Baskonus, Instability modulation for the (2+1)- dimension paraxial wave equation and its new optical soliton solutions in Kerr media, Physica Scripta, 95 (2019), 035207 . .
- [7] A.E. Green and P.M. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech, 78 (1976), 237246.
- [8] A.E. Green and P.M. Naghdi, On the theory of water waves, Proc R Soc Lond Ser AMath Phys Sci, 338 (1974), 4355.
- [9] G. Gui, Y. Liu, and T. Luo, Model Equations and Traveling Wave Solutions for Shallow-Water Waves with the Coriolis Effect, Journal of Nonlinear Science, 29 (2019), 9931039.
- [10] G. Guirao, H. M. Baskonus A. Kumar, M. S. Rawat, and G. Yel, Complex Patterns to the (3+1)-Dimensional B-type Kadomtsev-Petviashvili-Boussinesq Equation, Symmetry, 12 (2020). DOI:10.3390/sym12010017.
- [11] N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, Chich- ester: John Wiley and Sons, (1999).
- [12] S. Lie, Geometrie der Berhrungstransformationen, Leipzig: B. G. Teubner, (1896), Reprinted by Chelsea Publishing Company, New York, 1977.
- [13] S. Lie, Theorie der Transformationsgruppen I, II and III , Leipzig: B. G. Teubner (1888), Reprinted by Chelsea Publishing Company, New York, 1970.
- [14] J.P. Olver,Applications of Lie Groups to Differential Equations (2nd ed.). New York: Springer, (1993).
- [15] L.A. Ostrovsky, Nonlinear internal waves in a rotating ocean, Okeanologia,18 (1978), 181191.
- [16] L.V. Ovsiannikov, Group Analysis of Differential Equations, Moscow: Nauka (1978). English translation, Ames, W. F., Ed., published by Academic Press, New York, 1982.
- [17] Z. Pinar and H. Kocak,Exact solutions for the third-order dispersive-Fisher equations, Nonlinear Dyn, 91 (2018), 421426.
- [18] Z. Pnar and T. zis,An observation on the periodic solutions to nonlinear physical models by means of the auxiliary equation with a sixth degree nonlinear term , Communications in Non- linear Science and Numerical Simulation, 18(8) (2013), 2177-2187.
- [19] Z. Pnar and T. zis, Classical symmetry analysis and exact solutions for generalized Kortewegde Vries models with variable coefficients, International Journal of Non-Linear Mechanics, 105 (2018), 99104.
- [20] Z. Pinar,Simulations of Surface Corrugations of Graphene Sheets via the Generalized Graphene Thermophoretic Motion Equation, International Journal of Computational Materials Science and Engineering,9(1) (2020), 20050005. DOI:10.1142/S2047684120500050.
- [21] Z. Pinar, The Combination of Conservation Laws and Auxiliary Equation Method , Interna- tional Journal of Applied and Computational Mathematics ,6(1) (2020). DOI:10.1007/s40819- 019- 0764-2.
- [22] Z. Pinar, The symmetry analysis of electrostatic micro-electromechanical system (MEMS), Modern Physics Letters B, 34(18) (2020), 2050199. DOI:10.1142/S0217984920501997.
- [23] F. Serre, Contribution ltude des coulements permeanents et variables ands les canaux, Houille Blanche, 3 (1953), 374388.
- [24] P. Siriwata and S. V. Meleshko, Group properties of the extended GreenNaghdi equations, Ap- plied Mathematics Letters, 81 (2018), 16.
- [25] Y. Wang and Y. Yang, Solitary vortex dynamics of two-dimensional harmonically trapped Bose- Einstein condensates with higher-order nonlinear interactions, AIP Advances, 8 (2018), 095317.
- [26] Y. Wang, Q. Chen, J. Guo, and W. Wang, Sonic horizon dynamics for quantum systems with cubic-quintic-septic nonlinearity , AIP Advances, 9 (2019) , 075206.
- [27] Y. Wang, S. Li, J. Guo, Y. Zhou, Q. Zhou, and W. Wen, Analytical solution and Soliton-like behavior for the (1+1)-dimensional quantum system with generalized cubic-quintic nonlinearity, International Journal of Bifurcation and Chaos, 26 (2016), 1650195.
- [28] Y. Wang, Y. Yang, S. He, and W. Wang, Dynamic evolution of vortex solitons for coupled Bose-Einstein condensates in harmonic potential trap , AIP Advances,7 (2017), 105209.
|