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Abstract The simplified phenomenological model of long-crested shallow-water wave propa-

gations are considered without/with the Coriolis effect. Symmetry analysis is taken
into consideration to obtain exact solutions. Both classical wave transformation
and transformations are obtained with symmetries and solvable equations are kept
thanks to these transformations. Additionally, the exact solutions are obtained via

various methods which are ansatz based methods. The obtained results have a ma-
jor role in the literature so that the considered equation is seen in a large scale of
applications in the area of geophysical.
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1. Introduction

One of the real applications of wave phenomena is the fluid dynamics of geophysical
water waves which is modelled by Euler equations [3, 9]. The complexity and difficul-
ties encountered in theoretical and numerical studies have been solved with simpler
model equations which are an approach to Euler equations in some specific physical
regimes. The most known is the Green-Naghdi equations (GN), which is also called
the Serre equations [23], model the propagation of surface waves especially in coastal
oceanography. Physically, the characteristics of the flow have a significant role in the
model, and also it is explained by Figure 1.

In Figure 1, h(x, t) = h0 + η(x, t) − b(x), η(x, t), h0, b(x), represent total water
depth, free surface elevation, steel water depth and bottoms topography variation,

respectively. Additionally, nonlinearity ϵ = a
h0

and shallowness µ =
h2
0

λ2 , where is
a the wave amplitude, λ is the wavelength and h0 is mean depth, are important to
constitute the model more realistic [2, 9]. For shallow water, generally µ = 1.

Hence, Green et al. [7, 8] proposed GN equations as an alternative model to
the Kortewegde Vries (KdV) and Benjamin-Bona-Mahoney (BBM) equations for the
unidirectional propagation of long waves.
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Figure 1. The fluid dynamics of geophysical water waves

{
ut + ηx + ϵuux = µ

3(1+ϵη)

[(
1 + ϵη3

) (
uxt + ϵuuxx − ϵu2

x

)]
x
,

ηt + ((1 + ϵη)u)x = 0,
(1.1)

where u(x, t) and η(x, t) subtend the vertically averaged horizontal and the surface
component of the velocity at time t , respectively. Respect to the nonlinearity ϵ
with µ = 1 , Eq. (1.1) yields KdV equations, BBM equations, the usual Boussinesq
models, the Camassa-Holm (CH) and Degasperis-Procesi (DP) equations [2, 4, 9].
The geophysical water waves are impressed by the gravity and rotation of the Earth
which is known as the Coriolis effect which has first seen in Ostrovsky equation [15].
Eq. (1.1) ignores the Coriolis effect for free surface water waves. When the Coriolis
effect force is taken into consideration, Eq.(1.1) has an extra term which refers the
Coriolis effect,

{
ut + ηx + ϵuux + 2Ωηt =

µ
3(1+ϵη)

[(
1 + ϵη3

) (
uxt + ϵuuxx − ϵu2

x

)]
x
,

ηt + ((1 + ϵη)u)x = 0,
(1.2)

where Ω is a constant rotational frequency as a result of the Coriolis effect. Eq.
(1.2) is known as the rotational-Green-Naghdi equations [2, 9]. When Ω → 0, Eq.
(1.2) is reduced into Eq. (1.1). The given theorem by Chen et al. [2] is that the
rotation-Camasa-Holm (R-CH) equation is obtained by considering the vertical av-
erage velocity u(x, t) as the horizontal velocity uθ(x, t) calculated at a given depth
in Eq. (1.2) where θ ∈ [0, 1] is the level of fluid domain i.e. θ = 0 correspond to
the bottom while θ = 1 is the surface. Therefore, the R-CH equation with the given
parameters
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ut + cux +
2c2

c2 + 1
ϵuux + ω1ϵ

2u2ux + ω2ϵ
3u3ux + µ (αuxxx + βuxxt) (1.3)

− ϵµ (σuuxxx + δuxuxx) .

p ∈ i i.e. complex numbers, λ = 1
2

(
θ2 − 1

3

)
, c =

√
1 + Ω2 − Ω,

α = c (p+ λ) , β = − c2

3 (c2 + 1)
+ p+ λ, σ = −

c2
(
5c2 − 1

)
3 (c2 + 1)

3 − 3c2p

(c2 + 1)
,

δ = −
c2
(
3c4 + 16c2 + 4

)
3 (c2 + 1)

3 − 3c2 (3p+ λ)

(c2 + 1)
,

ω1 = −
3c
(
c2 − 1

) (
c2 − 2

)
2 (c2 + 1)

3 , ω2 =

(
c2 − 2

) (
c2 − 1

)2 (
8c2 − 1

)
2 (c2 + 1)

5 ,

is consistent with the R-GN equations i.e. Eq. ( 1.2) [2]. In this paper, the R-GN
equations in the CamassaHolm regime (Eq. (1.3)) is considered instead of Eq. (1.2).
For the considered model, not only the solitary wave solutions but also group sym-
metries are investigated. The symmetries of GN equations are obtained [1, 24] but
for Eq. (1.3) is the first attempt in the literature to our knowledge. Existence and
numerical solutions of R-GN equations are seen in the literature. The existence of
the solutions of R-GN equations is also proved [2, 9]. Now, in our study, we focus
on obtaining exact solutions in open form, as there is no study in the literature on
the exact solutions of the model. Eq. (1.3) is reduced into solvable equations via two
transformations: wave transformation and group transformation obtained by symme-
tries. To obtain exact solutions, the approximate methods, which are modifications of
the auxiliary equation method, are considered. The obtained results have a major role
in the literature so that the considered equation is seen in a large scale of applications
in the area of geophysical.

2. Group Analysis Method

Group Analysis method, which is also known as Lie group analysis, is important for
not only numerical methods but also analytical methods. By means of this method,
the equations are reduced to solvable equations by the obtained transformations via
symmetries. Conservation laws have an importance in physics and engineering, one
way to obtain them is Group analysis method [11, 13, 16, 17, 25, 26]. For many non-
linear models, these are the only explicit, exact solutions which are available, have a
significant role in both the mathematical analysis and applications of the system in
the science.
For the implementation of Group analysis method, the reader can find many docu-
ments and papers in the literature [12, 13, 14, 18, 21].
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3. The results

3.1. Symmetry analysis of R-GN equation. The classical Lie group analysis
is considered to obtain the symmetries of R-GN equation (Eq. (1.3)). The in-
nitesimal generator of one-parameter group with ξi is the tangent vector field is
X =

∑n
i=1 ξi(x)

∂
∂xi . The determining equations to determine ξi are given

∂ξx(x, t, u)

∂t
= −

(
3θ2c2 − c2 + 6pc2 + 3θ2 − 1 + 6p

)
cξu(x, t, u)

(3θ2c2 − c2 + 6pc2 + 3θ2 − 1 + 6p)u
,

∂ξx(x, t, u)

∂u
= 0,

∂ξt(x, t, u)

∂u
= 0,

∂ξt(x, t, u)

∂x
= 0,

∂ξx(x, t, u)

∂x
=

u
(

∂ξt(x,t,u)
∂t

)
+ ξu(x, t, u)

u
.

As a result of the determining system, tangent vector field is obtained,

ξx(x, t, u) =
c(c2 + 1)(3θ2 + 6p− 1)F1(t)

(3θ2 + 6p− 3)c2 + 3θ2 + 6p− 1

+ F2

(
(3θ2 + 6p− 1)(c3t+ ct− x)− xc2(3θ2 + 6p− 3)

c(c2 + 1)(3θ2 + 6p− 1)

)
,

ξt(x, t, u) = F1(t),

ξu(x, t, u) = −u
dF1(t)

dt

−
u
(
(3θ2 + 6p− 3)c2 + 3θ2 + 6p− 1

)
D (F2)

(
(3θ2+6p−1)(c3t+ct−x)−xc2(3θ2+6p−3)

c(c2+1)(3θ2+6p−1)

)
c(c2 + 1)(3θ2 + 6p− 1)

,

where F1 and F2 are arbitrary functions.

Now, assuming F2

(
(3θ2+6p−1)(c3t+ct−x)−xc2(3θ2+6p−3)

c(c2+1)(3θ2+6p−1)

)
= 0 and F1(t) = A the trans-

formation is obtained as u(x, t) = H(ζ), ζ =
−x+tc((c2+1)(3θ2+6p)−c2)

c(c2+1)(3θ2+6p−1) .Using the trans-

formation, Eq. (1.3) is reduced into Eq. (3.1) which is a third-order nonlinear ordinary
differential equation.
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H
′
(
1− 1

(c2 + 1) (3θ2 + 6p− 1)

)
(3.1)

− 3cϵHH
′

(c2 + 1)
2
(3θ2 + 6p− 1)

+
3
(
c2 − 1

) (
c2 − 2

)
ϵ2H2H

′

2 (c2 + 1)
4
(3θ2 + 6p− 1)

−
(
c2 − 1

)2 (
c2 − 2

)
ϵ3H3H

′

c (c2 + 1)
6
(3θ2 + 6p− 1)

+ µH
′′′

( (
3θ2 + 6p

) (
c2 + 1

)
+ 3c2

6c2 (c2 + 1)
3
(3θ2 + 6p− 1)

2

)

+ ϵµ

(
5c2 − 1 + 9p

(
c2 + 1

)2
3c (c2 + 1)

6
(3θ2 + 6p− 1)

3HH
′′′
+

(
c2 + 1

)2 (
54c2p− 9θ2

)
6 (c2 + 1)

3 H
′
H

′′

)
= 0

Numerical or analytical [5, 6, 10, 17, 18, 19, 20, 21, 25, 26, 27, 28] methods can
be considered to obtain the solutions of Eq.(3.1). Now, the Bernoulli approxima-
tion method [17, 20, 21] is considered that its auxiliary equation is Bernoulli type
differential equation

z
′
+ P (ζ)z +Q(ζ)zk = 0, k ̸= 0, 1. (3.2)

Due to the balancing principle, the ansatz is determined as H(ζ) = g0 + g1z(ζ) ,
where z(ζ) is the solution of Eq. (3.2) and g0 , g1 are the coefficients determined as
a result of the system.

Case 3.1. When P (ζ) = 1
ζ , Q(ζ) = ζ, k = 3 the parameters

c = ±
√

−14±2i
√
31

4 , p = − 25
18 ± i

√
31
18 , θ = ±

√
133±i

√
31

6 , g0 = 0 are obtained.

Case 3.2. When P (ζ) = P = constant,Q(ζ) = ζ, k = 3 the parameters
c = ±

√
−1mi, p = −2

3 ± 5
9 i are obtained.

Finally, all obtained parameters and the solution of Eq. (3.2) are substituted in
the ansatz the exact solution is hold, they are given in Figure 2, respectively.

As seen Figure 2, the solutions of Case 3.1 have soliton behavior, whereas for Case
3.2 the solutions are traveling wave solutions. Additionally, plot of Case 3.2 is given
for surface so θ = 1 .

3.2. The exact solutions of R-GN equation. In this section, instead of Lie sym-
metry transformations, the classical wave transformation ζ = x − mt is considered
to reduce Eq. (1.3). For the exact solutions of the reduced equation, two analytical
methods are used:

(1) Bernoulli approximation method [17, 20, 21] which is mentioned above. The
solution sets are given below for k = 2 . Their plots are given in Figure 3.
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(a) (b)

Figure 2. The solutions obtained via Lie symmetries for Case 3.1
and Case 3.2, respectively.

• Set 1

P (ζ) =
1

ζ
,Q(ζ) = ζ,m =

c
(
9θ2

(
c2 + 1

)2 − c2
(
3c2 + 16

))
9θ2 (c2 + 1)

2 − c2 (9c2 + 22)− 1
, p = − 5c2 − 1

9 (c2 + 1)
2 ,

µ1 = 9ζ2
(
c2 + 1

)2 ((
6c− 9ϵg0θ

2
) (

c2 + 1
)2

+ ϵg0
(
9c4 + 22c2 + 1

))2
µ2 = 4

[
g0ϵ
(
9θ2

(
c2 + 1

)2 − c2
(
9c2 − 22

)
− 1
)

×
(
9θ2

(
c2 + 1

)2
+ c2

(
3c2 − 4

)
+ 11

)
× s

((
4c− 9ϵg0θ

2
) (

c2 + 1
)2

+ ϵg0
(
9c4 + 22c2 + 1

)) ]

µ =
µ1

µ2

g1 =
g0ζ

2
((

6c− ϵg0θ
2
) (

c2 + 1
)2

+ ϵg0
(
9c4 + 22c2 + 1

))
2
(
(4c− 9ϵg0θ2) (c2 + 1)

2
+ ϵg0 (9c4 + 22c2 + 1)

)
,

• Set 2

P (ζ) =
1

ζ
,Q(ζ) = ζ,m =

c
(
9θ2

(
c2 + 1

)2 − c2
(
3c2 + 16

))
9θ2 (c2 + 1)

2 − c2 (9c2 + 22)− 1
, p = − 5c2 − 1

9 (c2 + 1)
2 ,
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µ =
27ζ2

(
c2 + 1

)2 (
9θ2

(
c2 + 1

)2 − c2
(
3c2 − 13

)
+ 5 + 9θ2

)2
4
(
9θ2 (c2 + 1)

2 − c2 (9c2 + 22)− 1
)(

9θ2 (c2 + 1)
2
+ c2 (3c2 − 4) + 11

)2 ,
g0 =

6c
(
c2 + 1

)2
ϵ
(
18θ2 (c2 + 1)

2 − c2 (12c2 + 35) + 4
) ,

g1 =
9cζ2

((
9c4

(
6 + c4

)
+ 9 + 36c2

(
1 + c4

))
θ2 + 5− c2

(
3 + 24c2 + 19c4 + 3c6

))
ϵ
(
18θ2 (c2 + 1)2 + 4− c2 (12c2 + 35)

) (
9θ2 (c2 + 1)2 + c2 (3c2 − 4) + 11

)
.

In addition, the given solution sets, the trivial solutions are obtained from
the algebraic system.

(a) (b)

Figure 3. The solutions obtained via Bernoulli approximation
method at the surface and bottom of the fluid, respectively.

(2) Chebyshev approximation method [22] is considered that its auxiliary equa-
tion is Chebyshev differential equation

(
1− ζ2

)
z

′′
(ζ)− ζz

′
(ζ) + n2z(ζ) = 0

,
with the transformation ω = cosζ reducing Eq.(6) to z

′′
(ω) + n2z(ω) = 0

and it has a solution Tn(ω) known as Chebyshev function. The solution sets
are given below.

• Set 1

m =
c
((

9µn2θ2 − 18
) (

c2 + 1
)2)− 5µn2

(
c4 + 4c2 + 1

)
(9µn2θ2 − 18) (c2 + 1)

2 − µn2 (13c4 + 28c2 + 5)
,

p = −
(
3µn2θ2 − 6

) (
c2 + 1

)2
+ µn2

(
c4 + 12c2 + 1

)
24µn2 (c2 + 1)

2 ,

g0 = 0,

g1 =
ω1

ϵω2 (C1sin(nζ) + C2cos(nζ))
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• Set 2

m =
c
(
9θ2

(
c2 + 1

)2 − 9c4 − 28c2 − 13
)

9θ2 (c2 + 1)
2 − 21c4 − 40c2 − 13

,

g0 = −
4c
(
c2 + 1

)2
ϵ
(
9θ2 (c2 + 1)

2 − 21c4 − 40c2 − 13
) ,

g11 = 4
[
4ω1

(
c2 + 1

)5
+
(
567− 243θ2

)
c9 +

(
−972θ2 + 2214

)
c7

+
(
−1458θ2 + 3078

)
c5 +

(
−972θ2 + 1782

)
c3 +

(
−243θ2 + 351

)
c
]

g12 = 9ϵ
[
(C1sin(nζ) + C2cos(nζ))

(
81θ4

(
c2 + 1

)4
− θ2

(
234 + 1188c2 + 2052c4 + 1476c6 + 378c8

)
+ 169 + 2146c4

+ 1040c2 + 441c8 + 1680c6
)]

g1 = −g11
g12

• Set 3

m1 =
[
µn2

(
6c

(
1 + 3c2

(
c2 + 1

)
c6
)
− 9ϵg0c

2 (c2 + 1
)2 ]

c7
(
12pn2µ− 12− 2n2µ

)
× c6ϵg0

(
−36pn2µ+ 6ω2ϵ

2g20 − 3µn2 − 18
)

+ c5
(
36pn2µ− 36− 6n2µ

)
+ c4ϵg0

(
−72pn2µ+ 18ω2ϵ

2g20 − 16µn2 − 36
)

+ c3
(
36pn2µ− 36− 6n2µ

)
+ c2ϵg0

(
−36pn2µ+ 18ω2ϵ

2g20 − 7µn2 − 18
)

+ c
(
12pn2µ− 12− 2n2µ

)
+ 6ω2ϵ

3g30 ,

m2 = 2
(
c6

(
3µn2θ2 − 6 + 6pn2µ− 3n2µ

)
+ c4

(
9µn2θ2 − 18 + 18pn2µ− 7n2µ

)
+ c2

(
9µn2θ2 − 18 + 18pn2µ− 5n2µ

)
+ 3µn2θ2 − 6 + 6pn2µ− n2µ

)
,

m =
m1

m2
,

g1 = − ω1 + 3ϵg0ω2

ϵω2 (C1sin(nζ) + C2cos(nζ))
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• Set4

µ1 = 2
(
ω2c

12 (c− 3m) + c11
(
ω2

(
5 + 3m2

)
− 81

)
+ c10m

(
ω2

(
−15−m2

)
− 81

)
+ c9

(
ω2

(
10 + 15m2

)
− 162

)
+ c8m

(
ω2

(
−30− 5m2

)
+ 162

)
+ c7

(
ω2

(
10 + 30m2

)
− 81

)
+ c6m

(
ω2

(
−30− 10m2

)
+ 81

)
+ c5ω2

(
5 + 30m2

)
− c4ω2m

(
15 + 10m2

)
+ c3ω2

(
1 + 15m2

)
− c2ω2m

(
3 + 5m2

)
+m2ω2 (3c−m)

µ2 = 3c6n2
(
9c5
(
θ2 − 1

)
+ c4m

(
−9θ2 + 21

)
+ c3

(
18θ2 − 28

)
+ c2m

(
−18θ2 + 40 + c

(
9θ2 − 13

)
+m

(
−9θ2 + 13

))
µ = −µ1

µ2

g0 =
(c−m)

(
c2 + 1

)
3ϵc2

,

g1 = − ω1c
2 + ω2(c−m)(c2 + 1)

ϵω2c2 (C1sin(nζ) + C2cos(nζ))

As it is seen that the new solutions of Eq. (1.3) are obtained via various considered
methods. In case of the problem is the initial/boundary value problem, the parameters
can be defined. The physical part of the obtained solutions is open to research.

4. Conclusion

In this article, group transformations and exact solutions of the rotation-Green-
Naghdi equations with the Coriolis effect have been achieved. As can be seen from the
solution sets, new exact solutions are obtained with two of the various modifications
of the sub-equation method in the literature, and the physical interpretation of the
exact solutions depends on the initial / boundary conditions. Due to the expected
behavior of the solutions, these two modifications of the sub-equation method are
considered.
The exact solutions of the model have been examined for the first time in the litera-
ture. The results that can be easily verified in this article relate to general geophysics
and coastal engineering. Therefore, the discovery of new mathematical results can
have a significant impact on future research in the relevant field.
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