- [1] M. Bahaj and A. Rachid, On the Finite Volume Element Method for Self-Adjoint Parabolic Integrodifferential Equations, Journal of Mathematics, (2013), Article ID 464893.
- [2] M. Berggren, A vertex-centered, dual discontinuous Galerkin method, J. Comput. Appl. Math., 192 (2006), 175-181.
- [3] Z. Cai, On the finite volume method, Numer. Math, 58 (1991), 713–735.
- [4] P. Chatzipantelidies, A finite volume method based on the Crouziex–Raviart element for elliptic PDE’s in two dimension, Numer. Math, 82 (1999), 409–432.
- [5] P. Chatzipantelidis, Finite volume methods for elliptic PDE’s: A new approach, Mathematical modelling and Numerical Analysis, 36 (2002), 307-324.
- [6] P. Chatzipantelidis, R.D. Lazarov, and V. Thom´ee, Error estimate for a finite volume element method for parabolic equations in convex polygonal domains, Numer. Meth. PDEs, 20 (2004), 650–674.
- [7] C. Chen and T. Shih, Finite element methods for integrodifferential equations, world Scientific Singapore, 1997.
- [8] S. H. Chou, Analysis and convergence of a covolume method for the generalized Stokes problem, Math. Comp, 66 (1997), 85–104.
- [9] S. H. Chou, D. Y. Kwak, Analysis and convergence of the MAC scheme for the generalized Stokes problem, Numer.Meth.PDEs, 13 (1997), 147–162.
- [10] S. H. Chou, D. Y. Kwak, Multigrid algorithms for a vertex-centered covolume method for elliptic problems. Numer. Math, 90 (2002), 441-458.
- [11] S. H. Chou, D. Y. Kwak, and Q. Li , Lp error estimates and superconvergence for covolume or finite volume element methods, Numer. Methods PDEs, 19 (2002), 463-486.
- [12] R. E. Ewing, R. D. Lazarov, and Y. Lin, Finite Volume element approximations of nonlocal in time one-dimensional flows in porous media, Computing, 64 (2000), 157-182.
- [13] R. E. Ewing, R. D. Lazarov, and Y. Lin, Finite Volume element approximations of nonlocal reactive flows in porous media, Numer. Methods Partial Differential Equations, 16 (2000), 285- 311.
- [14] R. E. Ewing, T. Lin, and Y. Lin, On the accuracy of the finite Volume element method based on piecewise linear polynomials, SIAM J. Numer. Anal, 39 (2002), 1865-1888.
- [15] R. Eymard, T. Gallou¨et, and R. Herbin, Finite Volume Methods: Handbook of Numerical Analysis, North-Holland, Amsterdam, 2000.
- [16] R. D. Lazarov and S. Z. Tomov, Adaptive finite volume element method for convection-diffusion- reaction problems in 3-D, in Scientific Computing and Application, Advances in Computation Theory and Practice NOVA Science Publ., Inc New York, 7 (2001), 91-106.
- [17] H. Jianguo and X. Shitong, on the finite volume element method for general self-adjoint elliptic problems, SIAM J. Numer. Anal, 35 (1998), 1762-1774.
- [18] Y. Lin, V. Thom´e, and L. B Wahlbin, Ritz-Volterra projections to finite element spaces and applications to integro-differential and related equations, SIAM J. Numer. Anal, 28 (1991), 1047-1070.
- [19] X. Ma, S. Shu, and A Zhou, symmetric finite volume discretizations for parabolic problems, Comput. Methods Appl. Mech. engrg, 192 (2003), 4467-4485.
- [20] I. D. Mishev, Finite volume and finite volume element methods for non-symmetric problems, Texas A&M Univ, Ph.D. Thesis, 1997, Tech Rept ISC-96-04-MATH.
- [21] R. K. Sinha and J. Geiser, Error estimates for finite volume element methods for convection- diffusion-reaction equations, Appl. num Math, 57 (2007), 59-72.
- [22] V. Thom´ee, Galerkin finite element methods for parabolic problems, (Springer series computa- tional mathematics), Springer Verlag New York, Inc., Secaucus, NJ, 2006.
- [23] V. R. Voller, Basic Control Volume Finite Element Methods For Fluids And Solids, World Scientific, 2009.
|