Finite volume element approximation for time dependent convection diffusion reaction equations with memory

Anas Rachid*
Laboratoire LMA, ENS de Casablanca, Hassan II university of Casablanca, B.P 50069, Ghandi Casablanca, Morocco.
ENSAM de Casablanca, Hassan II university of Casablanca, Casablanca, Morocco.
E-mail: rachid.anas@gmail.com
Mohamed Bahaj
Faculty of Sciences and Technology, University Hassan $1^{\text {st }}$,Settat, Morocco.
E-mail: mohamedbahaj@gmail.com
Rachid Fakhar
Laboratoire LS3M, Universit Hassan $1^{\text {st }}, 25000$ Khouribga, Morocco.
E-mail: rachid.fakhar@gmail.com

Abstract

Error estimates for element schemes for time-dependent for convection-diffusionreaction equations with memory are derived and stated. For the spatially discrete scheme, optimal order error estimates in L^{2}, H^{1}, and $W^{1, p}$ norms for $2 \leq p<\infty$, are obtained. In this paper, we also study the lumped mass modification. Based on the Crank-Nicolson method, a time discretization scheme is discussed and related error estimates are derived.

Keywords. Finite volume method, Crank-Nicolson method, Parabolic integrodifferential equation, Full discrete scheme, Error estimates.

2010 Mathematics Subject Classification. 35K10, 65N08, 65N15.

1. Introduction

The main purpose of this paper is to study semi-discrete and full-discrete finite volume element method (FVE) for convection-diffusion-reaction equations with memory of the form

$$
\begin{align*}
u_{t}-\nabla \cdot(A(x) \nabla u)+\nabla \cdot(b u)+c u & -\int_{0}^{t} \nabla \cdot(B(x, t, s) \nabla u(s)) d s \\
& =f(x, t), \quad \text { in } \Omega \times(0, T] \tag{1.1}
\end{align*}
$$

$$
\left\{\begin{array}{lr}
u=0, & \text { on } \partial \Omega \times(0, T], \\
u(\cdot, 0)=u_{0}, & \text { in } \Omega,
\end{array}\right.
$$

where Ω is a bounded domain in $\mathbb{R}^{d}, d=2,3$, with smooth boundary $\partial \Omega$ and $T<\infty$. Here $A=A(x)$ is a symmetric and uniformly positive definite dispersion-diffusion matrix in Ω, the parameter b is the divergence free groundwater velocity and c is

[^0]the constant reaction parameter and $B(t, s)$ an arbitrary second order linear partial differential operator, A, B both with coefficients depending smoothly on x. The nonhomogeneous term $f=f(x, t)$ and $u_{0}(x)$ are known functions, which are assumed to be smooth and satisfy certain compatibility conditions for $x \in \Omega$ and $t=0$. Problem (1.1) occurs in nonlocal reactive flows in porous media, viscoelasticity and heat conduction through materials with memory.

The finite volume method is an important numerical tool for solving partial differential equations. It has been widely used in several engineering fields, such as fluid mechanics, heat and mass transfer and petroleum engineering. The method can be formulated in the finite difference framework or in the Petrov-Galerkin framework. Usually, the former one is called finite volume method[3], MAC (marker and cell) method [9] or cell-centered method[4], and the latter one is called finite volume element method (FVE) $[6,12,13,14]$, covolume method[8] or vertex-centered method $[2,10]$. We refer to the monographs $[15,23]$ for the general presentation of these methods. The most important property of the FVE method is that it can preserve the conservation laws (mass, momentum, and heat flux) on each control volume. This important property, combined with adequate accuracy and ease of implementation, has attracted more people to do research in this field.

Recently Bahaj and Rachid [1] studied the FVE method for Self-Adjoint Parabolic Integrodifferential Equations and have obtained an optimal-order estimate in the L^{2} and H^{1}-norms. Ewing, Lin and Lin in [14] and Jianguo and Shitong in [17] elaborate the FVE method for general self adjoint elliptic problems. Ma, Shu and Zho in [19] presented and analyzed the semi-discrete and full discrete symmetric finite volume schemes for a class of parabolic problems. In $[12,13]$ the authors have studied the FVE method for one and two-dimensional parabolic integrodifferential equations and have obtained an optimal-order estimate in the L^{2}-norm. The regularity required on the exact solution u is $W^{3, p}$ for $p>1$ which is higher when compared that for finite element methods.

The new contribution of this work is to extend the results from [1] to the finite volume discretization for time-dependent convection-diffusion-reaction equations with memory (1.1). Both spatially discrete scheme and discrete-in-time scheme are analyzed and optimal error estimates in L^{2} and H^{1} norms are proved using only energy method. We also explore and generalize that idea to develop the lumped mass modification and $W^{1, p}$ estimates, $2 \leq p<\infty$. Our analysis avoid the use of semigroup theory and the regularity requirement on the solution is the same as that of finite element method. Further, based on the Crank-Nicolson method the fully discrete scheme is analyzed and related optimal error estimates are established.

This paper is organized as follows. In section 2 , we introduce some notations and present some preliminary materials to be used later. The Ritz-Volterra projection to finite volume element spaces is introduced and related estimates are carried out in section 3. In section 4 we estimate the error of the finite volume element approximations derived in the previous section. In section 5 the lumped mass are presented and optimal estimates in L^{2} and H^{1} norms are obtained Finally, The Crank-Nicolson scheme is studied in section 6 .

2. Finite volume element scheme

In this section, we introduce some material which will be used repeatedly below. Throughout this paper, C (with or without index) denotes a generic positive constant which does not depend on the spatial and time discretization parameters h and k, respectively.
2.1. Notations. We will use $\|\cdot\|_{m}$ and $|\cdot|_{m}$ (resp. $\|\cdot\|_{m, p}$ and $|\cdot|_{m, p}$) to denote the norm and semi-norm of the Sobolev space $H^{m}(\Omega)$ (resp. $W^{m, p}(\Omega)$). The scalar product and norm in $L^{2}(\Omega)$ are denoted by (\cdot, \cdot) and $\|\cdot\|$, respectively. Let $H_{0}^{1}(\Omega)$ be the standard Sobolev subspace of $H^{1}(\Omega)$ of functions vanishing on $\partial \Omega$.

The weak form of (1.1) is to find $u(\cdot, t):[0, T] \rightarrow H_{0}^{1}(\Omega)$, such that

$$
\begin{align*}
\left(u_{t}, v\right)+A(u, v)+\int_{0}^{t} B(t, s ; u(s), v) d s & =(f, v), \quad \forall v \in H_{0}^{1}(\Omega), \tag{2.1}\\
u(\cdot, 0) & =u_{0}
\end{align*}
$$

where

$$
\begin{aligned}
A(u, v) & =\int_{\Omega}(A(x) \nabla u \cdot \nabla v-b u \nabla v+c u v) d x \\
B(t, s ; u(s), v) & =\int_{\Omega} B(x, t, s) \nabla u(s) \cdot \nabla v d x
\end{aligned}
$$

Note that the bilinear form $A(.,$.$) may not be coercive but it can be made coercive$ by adding a sufficiently large constant $\lambda \in \mathbb{R}$ times the L^{2}-inner product. That is, it satisfies Gärding's type inequality

$$
A(v, v)+\lambda\|v\|^{2} \geq \frac{\alpha}{2}\|v\|_{1}^{2} \quad \forall v \in H_{0}^{1}(\Omega)
$$

Introducing the transformation $\bar{u}=e^{-\lambda t} u$ as a new dependent variable, we rewrite (1.1) as

$$
\begin{aligned}
\bar{u}_{t}-\nabla \cdot(A(x) \nabla \bar{u})+\nabla \cdot(b \bar{u}) & -\int_{0}^{t} \nabla \cdot(B(x, t, s) \nabla \bar{u}(s)) d s \\
& +(\lambda+c) \bar{u}=\bar{f}(x, t), \text { in } \Omega \times(0, T], \\
\bar{u}(0) & =u_{0} .
\end{aligned}
$$

The new bilinear form $A(.,$.$) is given$

$$
A(u, v)=\int_{\Omega} A(x, t) \nabla u \cdot \nabla v-b u \nabla v+\int_{\Omega}(\lambda+c) u v d x .
$$

Let \mathcal{T}_{h} be a decomposition of Ω into triangles (for the 2-D case) or tetrahedral (for the 3 -D case) with $h=\max h_{K}$, where h_{K} is the diameter of the element $K \in \mathcal{T}_{h}$.

In order to describe the FVEM for solving the problem (1.1), we shall introduce a dual partition \mathcal{T}_{h}^{*} based upon the original partition \mathcal{T}_{h} whose elements are called control volumes. We construct the control volumes in the same way as in [13, 16].

Figure 1. Left-hand side: A sample region with blue lines indicating the corresponding control volume V_{z}. Right-hand side: A triangle K partitioned into three subregions K_{z}

Let z_{K} be a point of $K \in \mathcal{T}_{h}$. In the 2-D case, on each edge e of K a point q_{e} is selected, then we connect z_{K} with line segments to q_{e}. Thus partitioning K into three quadrilaterals $K_{z}, z \in Z_{h}(K)$, where $Z_{h}(K)$ are the vertices of K. Then with each vertex $z \in Z_{h}=\cup_{K \in \mathcal{T}_{h}} Z_{h}(K)$ we associate a control volume V_{z}, which consists of the union of the subregions K_{z}, sharing the vertex z. (see Figure 1)

Similarly, in 3-D case, on each two faces S_{1} and S_{2} of K sharing an edge e, a point $q_{S_{i}}$ is selected, then we connect $q_{S_{i}}$ with an arbitrary point q_{e} of e and with z_{K} by line segments. Thus partitioning K into twelve (12) tetrahedron K_{z}, $z \in Z_{h}(K)$. (see,Figure 2). Then for $z \in Z_{h}$, the control volume V_{z} consists of the union of the subregions K_{z}, sharing the vertex z. Thus we finally obtain a group of control volumes covering the domain Ω, which is called the dual partition \mathcal{T}_{h}^{*} of the triangulation \mathcal{T}_{h}. We denote by Z_{h}^{0} the set of interior vertices and $N_{h}=\# Z_{h}^{0}$. For a vertex $z_{i} \in Z_{h}^{0}$, let $\Pi(i)$ be the index set of those vertices that, along with z_{i}; are in some element of T_{h}. (Figure 2)

There are various ways to introduce a regular dual partition \mathcal{T}_{h}^{*}. In this paper, we shall also use the construction of the control volumes in which z_{K} be the barycenter of $K \in \mathcal{T}_{h}$. In the 2-D case, we choose q_{e} to be the midpoint of the edge e (Figure 3).

In the 3-D case, we choose, q_{e} to be the midpoint of the edge e and $q_{S_{i}}$ to be the medi center of the face S_{i} (Figure 4).

We call the partition T_{h}^{*} regular or quasi-uniform, if there exists a positive $C>0$ such that

$$
C^{-1} h^{2} \leq \operatorname{meas}\left(V_{i}\right) \leq C h^{2}, \quad \forall V_{i} \in T_{h}^{*}
$$

Figure 2. A tetrahedron K partitioned into twelve subregions K_{z}

Figure 3. z_{K} is the barycenter of K, q_{e} to be the midpoint of the edge e

The barycenter-type dual partition can be introduced for any finite element triangulation T_{h} and leads to relatively simple calculations. Besides, if the finite element triangulation T_{h} is quasi-uniform, i.e., there exists a positive $C>0$ such that

$$
C^{-1} h^{2} \leq \operatorname{meas}(K) \leq C h^{2}, \quad \forall K \in T_{h},
$$

then the dual partition T_{h}^{*} is also quasi-uniform.
Based on the triangulation T_{h}, let S_{h} be the standard conforming finite element space of piecewise linear functions, defined on the triangulation T_{h},

$$
S_{h}=\left\{v \in \mathcal{C}(\Omega):\left.v\right|_{K} \text { is linear } \forall K \in T_{h}, \text { and }\left.v\right|_{\Gamma}=0\right\} .
$$

Let $I_{h}: \mathcal{C}(\Omega) \rightarrow S_{h}$ be the standard interpolation operators,

Figure 4. q_{e} is the midpoint of the edge $e, q_{S_{i}}$ is the medi center of the face S_{i}

$$
I_{h} u=\sum_{z \in Z_{h}^{0}} v_{z}(t) \varphi_{z}(x), \quad \forall v \in S_{h}
$$

where $\left\{\varphi_{z}\right\}_{z \in Z_{h}^{0}}$ are the standard nodal basis functions of S_{h} and $v_{z}(t)=v(t ; z)$.
2.2. Construction of the FVE scheme. We formulate the FVE for the problem (1.1) as follows: Given a $z \in Z_{h}^{0}$ and $K \in \mathcal{T}_{h}$, integrating (1.1) over the associated control volume V_{z} and applying Green's formula, we obtain an integral conservation form

$$
\begin{align*}
\int_{V_{z}} u_{t}-\int_{\partial V_{z}}(A(x) \nabla u-b u) \cdot n d s- & \int_{\partial V_{z}} \int_{0}^{t} B(x, t, s) \nabla u \cdot n d s \\
& +\int_{V_{z}}(\lambda+c) u=\int_{V_{z}} f(x, t) \tag{2.2}
\end{align*}
$$

where n denotes the unit outer normal vector to ∂V_{z}.
Let $I_{h}^{*}: \mathcal{C}(\Omega) \rightarrow S_{h}^{*}$ be the transfer operator defined by

$$
I_{h}^{*} v=\sum_{z \in Z_{h}^{0}} v(z) \chi_{z}, \quad \forall v \in S_{h}
$$

where

$$
S_{h}^{*}=\left\{v \in L^{2}(\Omega):\left.v_{i}\right|_{V_{z}} \text { is constant, } \forall z \in Z_{h}^{0}\right\}
$$

and χ_{z} is the characteristic function of the control volume V_{z}.
Now for $t>0$ and for an arbitrary $I_{h}^{*} v$, we multiply (2.2) by $v(z)$ and sum over all $z \in Z_{h}^{0}$. Then the semi discrete FVE approximation u_{h} of (1.1) is a solution to the
problem: find $u_{h}(t) \in S_{h}$ for $t>0$ such that

$$
\begin{align*}
& \left(u_{h t}, v_{h}\right)+A\left(u_{h}, v_{h}\right)+\int_{0}^{t} B\left(t, s ; u_{h}(s), v_{h}\right) d s=\left(f, v_{h}\right), \quad v_{h} \in S_{h}^{*} \tag{2.3}\\
& u_{h}(0)=u_{0 h} \in S_{h}
\end{align*}
$$

Here the bilinear forms $A(t ; u, v)$ and $B(t, s ; u, v)$ are defined by

$$
\begin{aligned}
& A(u, v)= \\
& \left\{\begin{array}{l}
\quad-\sum_{z \in Z_{h}^{0}} v_{z} \int_{\partial V z}(A(x) \nabla u-b u) \cdot n d s+v_{z} \int_{V z}(\lambda+c) u d x \\
\quad(u, v) \in\left(\left(H_{0}^{1} \cap H^{2}\right) \cup S_{h}\right) \times S_{h}^{*} \\
\int_{\Omega} A(x) \nabla u \cdot \nabla v d x-b u \nabla v+\int_{\Omega}(\lambda+c) u v d x, \quad(u, v) \in H_{0}^{1} \times H_{0}^{1}
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& B(t, s ; u, v)= \\
& \left\{\begin{array}{c}
-\sum_{z \in Z_{h}^{0}} v_{z} \int_{\partial V z} B(x, t, s) \nabla u \cdot n d s, \quad(u, v) \in\left(\left(H_{0}^{1} \cap H^{2}\right) \cup S_{h}\right) \times S_{h}^{*} \\
\int_{\Omega} B(x, t, s) \nabla u . \nabla v d x, \quad(u, v) \in H_{0}^{1} \times H_{0}^{1}
\end{array}\right.
\end{aligned}
$$

Let

$$
u_{h}=\sum_{j=1}^{N_{h}} \alpha_{z}(t) \varphi_{z}(x), \text { and } \quad \alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t), \ldots, \alpha_{N_{h}}(t)\right)^{T}
$$

Then we can rewrite the scheme (2.3) as systems of ordinary differential equations

$$
\begin{equation*}
M_{h} \alpha^{\prime}(t)+A_{h} \alpha(t)+\int_{0}^{t} B_{h}(t, s) \alpha(s) d s=F_{h}(t) \tag{2.4}
\end{equation*}
$$

Here $F_{h}(t)=\left(f_{1}(t), f_{2}(t), \ldots, f_{N_{h}}(t)\right)^{T}$, the mass matrix $M_{h}=\left\{M_{h_{i j}}\right\}=\left\{\left(\varphi_{i}, \chi_{j}\right)\right\}$ is tridiagonal and that both $A_{h}=\left\{A\left(\varphi_{i}, \chi_{j}\right)\right\}$ and $B_{h}(t, s)=\left\{B\left(t, s ; \varphi_{i}, \chi_{j}\right)\right\}$ are positive definite.

In order to describe features of the bilinear forms defined in (2.3) we introduce some discrete norms on S_{h} in the same way as in [13],

$$
\begin{aligned}
\left\|v_{h}\right\|_{0, h}^{2} & =\left(v_{h}, v_{h}\right)_{0, h}=\left(I_{h}^{*} v_{h}, I_{h}^{*} v_{h}\right), \\
\left|v_{h}\right|_{1, h}^{2} & =\sum_{x_{i} \in Z_{h}^{0} x_{j} \in \Pi(i)} \sum_{\operatorname{meas}}\left(V_{i}\right)\left(\left(v_{h i}-v_{h j}\right) / d_{i j}\right)^{2}, \quad \text { with } v_{h i}=v_{h}\left(x_{i}\right) \\
\left\|v_{h}\right\|_{1, h}^{2} & =\left\|v_{h}\right\|_{0, h}^{2}+\left|v_{h}\right|_{1, h}^{2}, \quad\left\|v_{h} \mid\right\|^{2}=\left(v_{h}, I_{h}^{*} v_{h}\right),
\end{aligned}
$$

where $d_{i j}=d\left(x_{i}, x_{j}\right)$ is the distance between x_{i} and x_{j}. Obviously, these norms are well defined for $v_{h} \in S_{h}^{*}$ as well and $\left\|v_{h}\right\|_{0, h}=\left\|v_{h}\right\| \|$.

Below, we state the equivalence of discrete norms $\|\cdot\|_{0, h}$ and $\|\cdot\|_{1, h}$ with usual norms $\|\cdot\|$ and $\|\cdot\|_{1}$, respectively on S_{h}.

Lemma 2.1 ([13]). There exist two positive constants C_{0} and C_{1} such that for all $v_{h} \in S_{h}$, we have

$$
\begin{aligned}
C_{0}\left\|v_{h}\right\|_{0, h} & \leq\left\|v_{h}\right\| \leq C_{1}\left\|v_{h}\right\|_{0, h}, \quad \forall v_{h} \in S_{h} \\
C_{0}\| \| v_{h}\| \| & \leq\left\|v_{h}\right\| \leq C_{1}\left\|v_{h}\right\| \|, \quad \forall v_{h} \in S_{h} \\
C_{0}\left\|v_{h}\right\|_{1, h} & \leq\left\|v_{h}\right\|_{1} \leq C_{1}\left\|v_{h}\right\|_{1, h}, \quad \forall v_{h} \in S_{h}
\end{aligned}
$$

Next, we recall some properties of the bilinear forms (see [13, 20]).
Lemma 2.2 ([13]). There exist two positive constants C and C_{0} such that for all $u_{h}, v_{h} \in S_{h}$, we have

$$
\begin{array}{ll}
A\left(u_{h}, I_{h}^{*} v_{h}\right) \leq C\left\|u_{h}\right\|_{1}\left\|v_{h}\right\|_{1}, \forall u_{h}, v_{h} \in S_{h}, \\
A\left(v_{h}, I_{h}^{*} v_{h}\right) \geq C_{0}\left\|v_{h}\right\|_{1}^{2}, & \forall v_{h} \in S_{h} .
\end{array}
$$

The following Lemmas is proved in [4, 13], which gives the key feature of the bilinear forms in the FVE method.

Lemma 2.3 ([4]). Assume that $\varphi \in W_{0}^{1, p}$. Then we have

$$
\begin{aligned}
& A\left(\varphi, v_{h}\right)-A\left(\varphi, I_{h}^{*} v_{h}\right)=\sum_{K \in \tau_{h}} \int_{\partial K}((A(x) \nabla \varphi-b \varphi) \cdot \mathbf{n})\left(v_{h}-I_{h}^{*} v_{h}\right) d s \\
& -\sum_{K \in \tau_{h}} \int_{K}(\nabla \cdot(A(x) \nabla \varphi-b \varphi)+(\lambda+c) \varphi)\left(v_{h}-I_{h}^{*} v_{h}\right) d s, \forall v_{h} \in S_{h} .
\end{aligned}
$$

The above identity holds true when $A(.,$.$) is replaced by B(t, s ; .,$.$) .$
Introduce

$$
\epsilon_{h}\left(f, v_{h}\right)=\left(f, v_{h}\right)-\left(f, I_{h}^{*} v_{h}\right), \quad \forall v_{h} \in S_{h},
$$

and

$$
\epsilon_{A}\left(u_{h}, v_{h}\right)=A\left(u_{h}, v_{h}\right)-A_{h}\left(u_{h}, I_{h}^{*} v_{h}\right), \quad \forall u_{h}, v_{h} \in S_{h}
$$

The bounds for $\epsilon_{h}, \epsilon_{A}$ can be given as follows
Lemma 2.4 ([5],pp 317). There exists positive constants C independent of h, such that for $v_{h} \in S_{h}$,
$\left|\epsilon_{h}\left(f, v_{h}\right)\right| \leq C h^{i+j}\|f\|_{i}\left\|v_{h}\right\|_{j}, \forall f \in H^{i}, i, j=0,1$,
$\left|\epsilon_{A}\left(V_{h} u, v_{h}\right)\right| \leq C h^{i+j}\left(\|u\|_{i+1}+\int_{0}^{t}\|u\|_{i+1}\right)\left\|v_{h}\right\|_{j}, \quad \forall u \in H^{i+1} \cap H_{0}^{1}, i, j=0,1$
and
$\left|\epsilon_{A}\left(u_{h}, v_{h}\right)\right| \leq C h\|u\|_{1}\left\|v_{h}\right\|_{1}, \quad \forall v_{h} \in S_{h}$.
Lemma 2.5 ([4]). Assume that $\varphi \in S_{h}$. Then we have

$$
A(\varphi, \chi)-A\left(\varphi, I_{h}^{*} \chi\right) \leq C h|\varphi|_{1, p}|\chi|_{1, q}
$$

Further for $\varphi \in W_{0}^{1, p} \cap W^{2, p}$, we have

$$
A(\varphi, \chi)-A\left(\varphi, I_{h}^{*} \chi\right) \leq C h\|\varphi\|_{2, p}\|\chi\|_{1, q} .
$$

3. Ritz-Volterra projection and Related estimates

Following [7, 13], define the Ritz-Volterra projection $V_{h}(t): H_{0}^{1} \rightarrow S_{h}$

$$
\begin{align*}
& A\left(u-V_{h} u, I_{h}^{*} v_{h}\right) \\
& +\int_{0}^{t} B\left(t, s ; u(s)-V_{h} u(s), I_{h}^{*} v_{h}\right) d s=0, t>0, \forall v_{h} \in S_{h} \tag{3.1}
\end{align*}
$$

This $V_{h}(t)$ is an elliptic projection with memory of u into S_{h}^{*}. It is easy to see that (3.1) is actually a system of integral equations of Volterra type. In fact if $V_{h}(t) u=$ $\sum_{j=1}^{N_{h}} \alpha_{j}(t) \varphi_{j}(x)$, then (3.1) can be rewritten as

$$
\begin{equation*}
A_{h} \alpha(t)+\int_{0}^{t} B_{h}(t, s) \alpha(s) d s=F_{h}(t) \tag{3.2}
\end{equation*}
$$

where $A_{h}, B_{h}(t, s)$ are matrices and $\alpha(t), F_{h}(t)$ are vectors, defined via

$$
\begin{aligned}
\alpha(t) & =\left(\alpha_{1}(t), \alpha_{2}(t), \ldots, \alpha_{N_{h}}(t)\right)^{T} \\
F_{h k}(t) & =A\left(u, \chi_{k}\right)+\int_{0}^{t} B\left(t, s ; u(s), \chi_{k}\right) d s, \quad k=1,2, \ldots, N_{h}, \\
A_{h} & =A\left(\varphi_{k}(x), \chi_{l}\right), \quad B_{h}(t, s)=B\left(t, s ; \varphi_{k}(x), \chi_{l}\right) .
\end{aligned}
$$

From the positivity of A (Lemma 2.2) and the linearity of (3.2) we see that the system (3.2) possesses a unique solution $\alpha(t)$. Consequently $V_{h}(t) u$ in (3.1) is well defined.

Set $\rho=u-V_{h}(t) u$. In [13] the following lemma was proved, which shows the H^{1} error estimate for ρ and its temporal derivative.

Lemma 3.1 ([13]). Assume that $D_{t}^{n} u \in L^{\infty}\left(H_{0}^{1} \cap H^{2}\right)$ for all $0 \leq n \leq k$, for some integer $k \geq 0$. Then for $T>0$ fixed there is a constant $C=C(T ; k)>0$, independent of h and u, such that for all $0 \leq n \leq k$ and $0<t<T$,

$$
\|\rho(t)\|_{1} \leq C h\left(\|u\|_{2}+\int_{0}^{t}\|u\|_{2} d s\right)
$$

and

$$
\left\|D_{t}^{n} \rho(t)\right\|_{1} \leq C h\left(\sum_{i=0}^{n}\left\|D_{t}^{i} u\right\|_{2}+\int_{0}^{t}\|u\|_{2} d s\right)
$$

Now we establish L^{2} error estimate for ρ and its temporal derivative which improves the Theorem 2.2 in [13]. This estimate is optimal with respect to the order of convergence and the regularity of the solution.

Lemma 3.2. Assume that $f \in H^{-1}(\Omega)$ and for some integer $k \geq 0, D_{t}^{n+1} u \in$ $L^{\infty}\left(H_{0}^{1} \cap H^{2}\right)$ for all $0 \leq n \leq k$. Then for fixed $T>0$, there is a constant $C=$
$C(f ; T ; k)>0$, independent of h and u, such that for all $0 \leq n \leq k$ and $0<t<T$,

$$
\|\rho(t)\| \leq C h^{2}\left(\|f\|_{1}+\left\|u_{t}\right\|_{1}+\|u\|_{2}+\int_{0}^{t}\|u\|_{2} d s\right)
$$

and

$$
\begin{aligned}
\left\|D_{t}^{n} \rho(t)\right\| & \leq C h^{2}\left(\sum_{i=0}^{n}\left\|D_{t}^{i} f\right\|_{1}+\sum_{i=0}^{n+1}\left\|D_{t}^{i} u\right\|_{1}+\sum_{i=0}^{n}\left\|D_{t}^{i} u\right\|_{2}+\int_{0}^{t}\|u\|_{2} d s\right) \\
& \leq C h^{2}\left(\sum_{i=0}^{n}\left\|D_{t}^{i} f\right\|_{1}+\left\|D_{t}^{n+1} u\right\|_{1}+\sum_{i=0}^{n}\left\|D_{t}^{i} u\right\|_{2}+\int_{0}^{t}\|u\|_{2} d s\right) .
\end{aligned}
$$

Proof. The proof will proceed by duality argument. Let $\psi \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of

$$
\begin{aligned}
A^{*} \psi=\rho & \text { in } \Omega \\
\psi=0 & \text { on } \partial \Omega .
\end{aligned}
$$

The solution $\psi \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ satisfies the following regularity estimate

$$
\begin{equation*}
\|\psi\|_{2} \leq C\|\rho\| \tag{3.3}
\end{equation*}
$$

Recalling the Ritz projection, [7, 13], $R_{h}: H_{0}^{1} \cap H^{2} \rightarrow S_{h}$ associated with a bilinear form $A(.,$.$) ; that is,$

$$
A\left(R_{h} u-u, v_{h}\right)=0, \quad v_{h} \in S_{h}
$$

Multiplying equation 3.3 by ρ and then taking L^{2} inner-product over Ω, we obtain

$$
\begin{aligned}
\|\rho\|^{2} & =A(\rho, \psi)=A\left(\rho, \psi-R_{h} \psi\right)+A\left(\rho, R_{h} \psi-I_{h}^{*}\left(R_{h} \psi\right)\right) \\
& -\int_{0}^{t} B\left(t, s ; \rho(s), I_{h}^{*} R_{h} \psi-R_{h} \psi\right) d s-\int_{0}^{t} B\left(t, s ; \rho(s), R_{h} \psi-\psi\right) d s \\
& -\int_{0}^{t} B(t, s ; \rho(s), \psi) d s=I_{1}+I_{2}+I_{3}+I_{4}+I_{5}
\end{aligned}
$$

We have

$$
\left|I_{1}\right|+\left|I_{4}\right| \leq C h^{2}\left(\|u\|_{2}+\int_{0}^{t}\|u\|_{2} d s\right)\|\psi\|_{2}
$$

Applying lemma 2.4, we obtain

$$
\begin{aligned}
& A\left(\rho, R_{h} \psi-I_{h}^{*}\left(R_{h} \psi\right)\right)-\int_{0}^{t} B\left(t, s ; \rho(s), I_{h}^{*} R_{h} \psi-R_{h} \psi\right) d s \\
= & A\left(u, R_{h} \psi-I_{h}^{*}\left(R_{h} \psi\right)\right)+\int_{0}^{t} B\left(t, s ; u(s), R_{h} \psi-I_{h}^{*} R_{h} \psi\right) d s \\
& -A\left(V_{h} u, R_{h} \psi-I_{h}^{*}\left(R_{h} \psi\right)\right)+\int_{0}^{t} B\left(t, s ; V_{h} u(s), I_{h}^{*} R_{h} \psi-R_{h} \psi\right) d s \\
= & \left(f-u_{t}, R_{h} \psi-I_{h}^{*}\left(R_{h} \psi\right)\right)-\epsilon_{A}\left(V_{h} u, R_{h} \psi\right)+\int_{0}^{t} \epsilon_{B(t, s ;, .)}\left(V_{h} u(s), R_{h} \psi\right) d s
\end{aligned}
$$

$$
\left|I_{2}+I_{3}\right| \leq C h^{2}\left(\|f\|_{1}+\left\|u_{t}\right\|_{1}+\|u\|_{2}+\int_{0}^{t}\|u\|_{2} d s\right)\|\psi\|_{1} .
$$

Finally, we have

$$
\left|I_{5}\right| \leq \int_{0}^{t}\left(\rho(s), B^{*}(t, s) \psi\right) d s \leq C\left(\int_{0}^{t}\|\rho\| d s\right)\|\psi\|_{2},
$$

then we have

$$
\|\rho\| \leq C h^{2}\left(\|f\|_{1}+\left\|u_{t}\right\|_{1}+\|u\|_{2}+\int_{0}^{t}\|u\|_{2} d s\right)+C\left(\int_{0}^{t}\|\rho\| d s\right) .
$$

Finally, an application of Grönwall's lemma yields the first estimate. The second inequality follows in a similar fashion.

Lemma 3.3. There exists a constant C independent of h such that

$$
\|\rho\|_{1, p} \leq C h^{2}\left(\|u\|_{2, p}+\int_{0}^{t}\|u\|_{2, p} d s\right) .
$$

Proof. Let ρ_{x} be an arbitrary component of $\nabla \rho$ with pand q conjugate indices, we have

$$
\left\|\rho_{x}\right\|_{p}=\sup \left\{\left(\rho_{x}, \varphi\right) ; \varphi \in \mathcal{C}_{0}^{\infty}(\Omega),\|\varphi\|_{q}=1\right\} .
$$

For any such φ, let ψ be the solution of

$$
\begin{aligned}
A^{*}(\psi, v) & =-\left(\varphi_{x}, v\right) \quad \forall v \in H_{0}^{1}(\Omega), \\
\psi & =0 \quad \text { on } \partial \Omega .
\end{aligned}
$$

It follows from the regularity theory for the elliptic problem that

$$
\|\psi\|_{1, q} \leq C_{p}\|\varphi\|_{q}=C_{p} .
$$

We then have by application of (3.1) that

$$
\begin{aligned}
\left(\rho_{x}, \varphi\right) & =A(\rho, \psi)=A\left(\rho, \psi-R_{h} \psi\right)+A\left(\rho, R_{h} \psi-I_{h}^{*}\left(R_{h} \psi\right)\right) \\
& +\int_{0}^{t} B\left(t, s ; \rho(s), I_{h}^{*}\left(R_{h} \psi\right)\right) d s \\
& =I_{1}+I_{2}+I_{3} \\
A(\rho, \psi & \left.-R_{h} \psi\right)=A\left(R_{h} u-u, \psi\right)=-\left(\left(R_{h} u-u\right)_{x}, \varphi\right) \leq C h\|u\|_{2, p} .
\end{aligned}
$$

Applying lemma 4, we have

$$
I_{2}=A\left(u, R_{h} \psi-I_{h}^{*}\left(R_{h} \psi\right)\right)-A\left(V_{h} u, R_{h} \psi-I_{h}^{*}\left(R_{h} \psi\right)\right) \leq C h\|u\|_{2, p} .
$$

Finally, I_{3} is estimated as

$$
I_{3}=\int_{0}^{t} B\left(t, s ; \rho(s), I_{h}^{*}\left(R_{h} \psi\right)\right) d s \leq C_{p} \int_{0}^{t}\|\rho\|_{1, p} d s .
$$

Combining these estimates we get

$$
\|\rho\|_{1, p} \leq C h\|u\|_{2, p}+C_{p} \int_{0}^{t}\|\rho\|_{1, p} d s
$$

whence by Grönwall's lemma

$$
\|\rho\|_{1, p} \leq C h\left(\|u\|_{2, p}+\int_{0}^{t}\|u\|_{2, p} d s\right)
$$

4. ERror estimates for semi-discrete approximations

We split the error $e(t)=u(t)-u_{h}(t)$ as follows

$$
e(t)=\left(u(t)-V_{h} u(t)\right)+\left(V_{h} u(t)-u_{h}(t)\right)=\rho+\theta
$$

It is easy to see that $\theta=V_{h} u(t)-u_{h}(t) \in S_{h}$ satisfies an error equation of the form

$$
\begin{equation*}
\left(\theta_{t}, I_{h}^{*} v_{h}\right)+A\left(\theta, I_{h}^{*} v_{h}\right)+\int_{0}^{t} B\left(t, s ; \theta(s), I_{h}^{*} v_{h}\right) d s=-\left(\rho_{t}, I_{h}^{*} v_{h}\right), v_{h} \in S_{h} \tag{4.1}
\end{equation*}
$$

Since the estimates of ρ are already known, it is enough to have estimates for θ. We shall prove a sequence of lemmas which lead to the following result.

Lemma 4.1. There is a positive constant C independent of h such that

$$
\|\mid \theta(t)\| \| \leq C\left(\|\theta(0)\|\left\|^{2}+\int_{0}^{t}\right\| \rho_{t} \| d s\right)
$$

Proof. Since $\theta \in S_{h}$, we may take $v_{h}=\theta$ in (4.1) to obtain

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\|\|\theta(t)\|\|^{2}+c\|\theta\|_{1}^{2} & \leq\left\|\rho_{t}\right\|\|\theta\|+C \int_{0}^{t}\|\theta\|_{1} d s\|\theta\|_{1} \\
& \leq\left\|\rho_{t}\right\|\|\theta\|+\frac{1}{2} c\|\theta\|_{1}^{2}+C \int_{0}^{t}\|\theta\|_{1}^{2} d s
\end{aligned}
$$

and hence by integration, we have

$$
\|\theta(t)\|^{2}+\int_{0}^{t}\|\theta\|_{1}^{2} d s \leq C\left(\|\theta(0)\|^{2}+\int_{0}^{t}\left\|\rho_{t}\right\|\|\theta\| d s+\int_{0}^{t} \int_{0}^{s}\|\theta(\tau)\|_{1}^{2} d \tau d s\right)
$$

Grönwall's lemma now implies

$$
\begin{aligned}
\|\mid \theta(t)\|\left\|^{2}+\int_{0}^{t}\right\| \theta \|_{1}^{2} d s & \leq C\left(\|\theta(0)\|\left\|^{2}+\int_{0}^{t}\right\| \rho_{t}\| \| \theta \| d s\right) \\
& \leq C\| \|(0)\| \|^{2}+\frac{1}{2} \sup _{s \leq t}\|\theta(s)\|^{2}+\left(\int_{0}^{t}\left\|\rho_{t}\right\| d s\right)^{2}
\end{aligned}
$$

Since this holds for all t, we may conclude that

$$
\|\theta(t)\| \leq C\left(\|\theta(0)\| \mid+\int_{0}^{t}\left\|\rho_{t}\right\| d s\right)
$$

Lemma 4.2. There is a positive constant C independent of h such that

$$
\int_{0}^{t}\left\|\theta_{t}\right\|^{2} d s+\|\theta\|_{1}^{2} \leq C\left(\|\theta(0)\|_{1}^{2}+\int_{0}^{t}\left\|\rho_{t}\right\|^{2} d s\right)
$$

Proof. Set $v_{h}=\theta_{t}$ in (4.1) to get

$$
\begin{aligned}
\mid\left\|\theta_{t}\right\| \|^{2}+\frac{1}{2} \frac{d}{d t} A\left(\theta, I_{h}^{*} \theta\right) & =-\left(\rho_{t}, I_{h}^{*} \theta_{t}\right)-\int_{0}^{t} B\left(t, s ; \theta(s), I_{h}^{*} \theta_{t}(t)\right) d s \\
& +\frac{1}{2}\left[A\left(\theta_{t}, I_{h}^{*} \theta\right)-A\left(\theta, I_{h}^{*} \theta_{t}\right)\right] \\
& \leq \frac{1}{2}\left\|\rho_{t}\right\|^{2}+\frac{1}{2}\left\|\theta_{t}\right\| \|^{2} \\
& +\frac{1}{2}\left[A\left(\theta_{t}, I_{h}^{*} \theta\right)-A\left(\theta, I_{h}^{*} \theta_{t}\right)\right] \\
& -\frac{d}{d t} \int_{0}^{t} B\left(t, s ; \theta(s), I_{h}^{*} \theta(t)\right) d s \\
& +B\left(t, t ; \theta(t), I_{h}^{*} \theta(t)\right) \\
& +\int_{0}^{t} B_{t}\left(t, s ; \theta(s), I_{h}^{*} \theta(t)\right) d s \\
\left\|\theta_{t}\right\|^{2}+\frac{d}{d t} A\left(\theta, I_{h}^{*} \theta\right) & \leq\left\|\rho_{t}\right\|^{2}-2 \frac{d}{d t} \int_{0}^{t} B\left(t, s ; \theta(s), I_{h}^{*} \theta\right) d s \\
& +C\left(\|\theta\|_{1}^{2}+\int_{0}^{t}\|\theta(s)\|_{1}^{2} d s\right) \\
& +\left[A\left(\theta_{t}, I_{h}^{*} \theta\right)-A\left(\theta, I_{h}^{*} \theta_{t}\right)\right] .
\end{aligned}
$$

In addition, recall that

$$
A\left(u_{h}, I_{h}^{*} v_{h}\right)-A\left(v_{h}, I_{h}^{*} u_{h}\right) \leq C h\left\|u_{h}\right\|_{1}\left\|v_{h}\right\|_{1}, \quad \forall u_{h}, v_{h} \in S_{h},
$$

then applying an inverse inequality and using kickback argument, we obtain

$$
\begin{aligned}
{\left[A\left(\theta_{t}, I_{h}^{*} \theta\right)-A\left(\theta, I_{h}^{*} \theta_{t}\right)\right] } & \leq C h\left\|\theta_{t}\right\|_{1}\|\theta\|_{1} \leq C\left\|\theta_{t}\right\|\|\theta\|_{1} \\
& \leq \varepsilon\left\|\theta_{t}\right\|^{2}+C\|\theta\|_{1}^{2}
\end{aligned}
$$

Combining these estimates, we derive

$$
\begin{aligned}
\left\|\theta_{t}\right\|^{2}+\frac{d}{d t} A\left(\theta, I_{h}^{*} \theta\right) & \leq\left\|\rho_{t}\right\|^{2}-2 \frac{d}{d t} \int_{0}^{t} B\left(t, s ; \theta(s), I_{h}^{*} \theta\right) d s \\
& +C\left(\|\theta\|_{1}^{2}+\int_{0}^{t}\|\theta(s)\|_{1}^{2} d s\right) .
\end{aligned}
$$

So after integration in time and using the weak coercivity of $A\left(\theta, I_{h}^{*} \theta\right)$ we get

$$
\begin{aligned}
\int_{0}^{t}\left\|\theta_{t}\right\|^{2} d s+c_{0}\|\theta\|_{1}^{2} & \leq c_{0}\|\theta(0)\|_{1}^{2}+\int_{0}^{t}\left\|\rho_{t}\right\|^{2} d s \\
& -2 \int_{0}^{t} B\left(t, s ; \theta(s), I_{h}^{*} \theta\right) d s+C \int_{0}^{t}\|\theta(s)\|_{1}^{2} d s \\
& \leq c_{0}\|\theta(0)\|_{1}^{2}+\frac{c}{2}\|\theta\|_{1}^{2}+C\left(\int_{0}^{t}\left\|\rho_{t}\right\|^{2}+\|\theta(s)\|_{1}^{2} d s\right)
\end{aligned}
$$

and by Grönwall's lemma,

$$
\int_{0}^{t}\left\|\theta_{t}\right\|^{2} d s+c\|\theta\|_{1}^{2} \leq C\left(\|\theta(0)\|_{1}^{2}+\int_{0}^{t}\left\|\rho_{t}\right\|^{2} d s\right)
$$

Theorem 4.3. ([1])[Error estimates in L^{2} and H^{1}-norms] Let u, u_{h} be the solutions of (2.2) and (2.4) respectively. Assume that $u \in L^{\infty}\left(H_{0}^{1} \cap H^{2}\right), u_{t} \in L^{\infty}\left(H^{2}\right)$.
(a) Let $u_{0 h}$ be chosen so that $\left\|u_{0 h}-u_{0}\right\| \leq C h^{2}\left\|u_{0}\right\|_{2}$ and assume that $u_{t t} \in$ $L^{\infty}\left(H^{1}\right)$ and $f, f_{t} \in L^{\infty}\left(H^{1}\right)$. Then for fixed $T>0$, there is a constant $C=C(T)$ independent of h, such that for all $0<t<T$,

$$
\left\|u_{h}(t)-u(t)\right\| \leq C h^{2}\left(\|f(0)\|_{1}+\left\|u_{0}\right\|_{2}+\left\|u_{t}\right\|_{1}+\int_{0}^{t}\left\|f_{t}\right\|_{1}+\left\|u_{t}\right\|_{2}+\left\|u_{t t}\right\|_{1} d s\right)
$$

(b) Let $u_{0 h}$ be chosen so that $\left\|u_{0 h}-u_{0}\right\|_{1} \leq C h\left\|u_{0}\right\|_{2}$. Then for fixed $T>0$, there is a constant $C=C(T)$ independent of h, such that for all $0<t<T$,

$$
\left.\| u_{h}(t)-u(t)\right) \|_{1} \leq C h\left(\left\|u_{0}\right\|_{2}+\int_{0}^{t}\left\|u_{t}\right\|_{2} d s\right)
$$

Now, we prove the error estimate for FVE approximation in $W^{1, p}$-norm.
Theorem 4.4. Let u, u_{h} be the solution of (2.2) and (2.4), respectively. Assume that $u, u_{t} \in L^{\infty}\left(H_{0}^{1} \cap W^{2, p}\right)$. In addition, for dimension $d=2$, we have for h sufficiently small

$$
\left\|u-u_{h}\right\|_{1, p} \leq C h\left(\left\|u_{0}\right\|_{2}+\|u\|_{2, p}+\int_{0}^{t}\left\|u_{t}\right\|_{2} d s\right)
$$

Proof. Given $\varphi \in \mathcal{C}_{0}^{\infty}(\Omega)$, find $\psi \in H_{0}^{1}(\Omega)$ such that

$$
\begin{aligned}
A^{*} \psi & =-\varphi_{x} & \text { in } \Omega \\
\psi & =0 & \text { on } \partial \Omega,
\end{aligned}
$$

and

$$
\|\psi\|_{1, q} \leq\|\varphi\|_{0, q} .
$$

We have

$$
\begin{aligned}
&\left(\left(u-u_{h}\right)_{x}, \varphi\right)=A\left(u-u_{h}, \psi\right)=A\left(u-u_{h}, \psi-R_{h} \psi\right) \\
&+A\left(u-u_{h}, R_{h} \psi-I_{h}^{*} R_{h} \psi\right) \\
&-\int_{0}^{t} B\left(t, s ;\left(u-u_{h}\right)(s), I_{h}^{*} R_{h} \psi\right) d s \\
&-\left(\left(u-u_{h}\right)_{t}, I_{h}^{*} R_{h} \psi\right) \\
&=I_{1}+I_{2}+I_{3}+I_{4} . \\
&\left|I_{1}\right| \leq\left|A\left(u-R_{h} u, \psi\right)\right| \leq C\left\|u-R_{h} u\right\|_{1, p}\|\psi\|_{1, q} \leq C h\|u\|_{2, p}\|\psi\|_{1, q} .
\end{aligned}
$$

By lemma 2.1, p. 468 in [11]

$$
\begin{aligned}
& \left|I_{2}\right| \leq A\left(u-u_{h}, R_{h} \psi-I_{h}^{*} R_{h} \psi\right) \leq C h\left(\left|u-u_{h}\right|_{1, p}+|u|_{2, p}\right)\|\psi\|_{1, q} . \\
& \left|I_{3}\right| \leq \int_{0}^{t}\left\|u-u_{h}\right\|_{1, p} d s\|\psi\|_{1, q} \\
& \left|I_{4}\right| \leq\left(\left\|u-u_{h}\right\|\right)\|\psi\| \leq C h^{2}\left(\left\|u_{0}\right\|_{2}+\int_{0}^{t}\left\|u_{t}\right\|_{2} d s\right)\|\psi\|_{1, q},
\end{aligned}
$$

where we have used the fact $\|\psi\| \leq\|\psi\|_{1, r}, r>1$. Combining these estimates we get

$$
\begin{aligned}
\left|\left(\left(u-u_{h}\right)_{x}, \varphi\right)\right| & \leq C h\left(\left\|u_{0}\right\|_{2}+\|u\|_{2, p}+\int_{0}^{t}\left\|u_{t}\right\|_{2} d s\right)\|\psi\|_{1, q}, \\
\left\|\left(u-u_{h}\right)_{x}\right\|_{0, p} & =\sup \frac{\left(\left(u-u_{h}\right)_{x}, \varphi\right)}{\|\varphi\|_{0, q}} \\
& \leq C h\left|u-u_{h}\right|_{1, p}+C h\left(\left\|u_{0}\right\|_{2}+\|u\|_{2, p}+\int_{0}^{t}\left\|u_{t}\right\|_{2} d s\right) .
\end{aligned}
$$

Hence using the Poincaré inequality, we have for h sufficiently small

$$
\left\|u-u_{h}\right\|_{1, p} \leq C h\left(\left\|u_{0}\right\|_{2}+\|u\|_{2, p}+\int_{0}^{t}\left\|u_{t}\right\|_{2} d s\right) .
$$

We compare the relationship between covolume solution and the Galerkin finite element solution.
Corollary 4.5. Let \widetilde{u}_{h} be the finite element solution to (2.2), i.e.,

$$
\begin{align*}
\left(\widetilde{u}_{h t}, v_{h}\right)+A\left(\widetilde{u}_{h}, v_{h}\right)+\int_{0}^{t} B\left(t, s ; \widetilde{u}_{h}(s), v_{h}\right) d s & =\left(f, v_{h}\right), v_{h} \in S_{h}, \tag{4.2}\\
\widetilde{u}_{h}(0) & =R_{h} u_{0} .
\end{align*}
$$

Suppose that $d=2$. Then for sufficiently small $h>0$, one may conclude

$$
\begin{aligned}
\left\|\left(\widetilde{u}_{h}-u_{h}\right)\right\|_{1, p} & \leq C\binom{h\left\|u-u_{h}\right\|_{1, p}+\left\|\left(u-u_{h}\right)_{t}\right\|+\left\|\left(\widetilde{u}_{h}-u\right)_{t}\right\|}{+\int_{0}^{t}\left(\left\|\left(u-u_{h}\right)(s)\right\|_{1, p}+\left\|\left(u-\widetilde{u}_{h}\right)(s)\right\|_{1, p}\right) d s} \\
& \leq C(u) h .
\end{aligned}
$$

Proof. By (2.2) and (4.2),

$$
\left(\left(\widetilde{u}_{h}-u\right)_{t}, v_{h}\right)+A\left(\widetilde{u}_{h}-u, v_{h}\right)+\int_{0}^{t} B\left(t, s ;\left(\widetilde{u}_{h}-u\right)(s), v_{h}\right) d s=0, \quad v_{h} \in S_{h} .
$$

Consider the following auxiliary problem. For any such φ, let ψ be the solution of

$$
\begin{array}{rlrl}
A^{*} \psi & =-\varphi_{x} & \text { in } \Omega \\
\psi & =0 \quad \text { on } \partial \Omega,
\end{array}
$$

with

$$
\begin{aligned}
&\|\psi\|_{1, q} \leq\|\varphi\|_{0, q} \\
& \begin{aligned}
\left(\left(\widetilde{u}_{h}-u_{h}\right)_{x}, \varphi\right) & =A\left(\widetilde{u}_{h}-u_{h}, \psi\right) \\
& =A\left(\widetilde{u}_{h}-u_{h}, \psi-R_{h} \psi\right)+A\left(u-u_{h}, R_{h} \psi\right) \\
& -A\left(u-u_{h}, I_{h}^{*} R_{h} \psi\right)-\left(\left(u-u_{h}\right)_{t}, I_{h}^{*} R_{h} \psi\right) \\
& -\int_{0}^{t} B\left(t, s ;\left(u-u_{h}\right)(s), I_{h}^{*} R_{h} \psi\right) d s+A\left(\widetilde{u}_{h}-u, R_{h} \psi\right) \\
& =\left[A\left(u-u_{h}, R_{h} \psi\right)-A\left(u-u_{h}, I_{h}^{*} R_{h} \psi\right)\right] \\
& -\left(\left(u-u_{h}\right)_{t}, I_{h}^{*} R_{h} \psi\right)-\left(\left(\widetilde{u}_{h}-u\right)_{t}, R_{h} \psi\right) \\
& -\int_{0}^{t} B\left(t, s ;\left(u-u_{h}\right)(s), I_{h}^{*} R_{h} \psi\right) d s \\
& -\int_{0}^{t} B\left(t, s ;\left(\widetilde{u}_{h}-u\right)(s), R_{h} \psi\right) d s \\
& =I_{1}+I_{2}+I_{3} .
\end{aligned} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left|I_{1}\right| & \leq C h\left\|u-u_{h}\right\|_{1, p}\|\psi\|_{1, q} \\
\left|I_{2}\right| & \leq C\left(\left\|\left(u-u_{h}\right)_{t}\right\|+\left\|\left(\widetilde{u}_{h}-u\right)_{t}\right\|\right)\|\psi\| \\
& \leq C\left(\left\|\left(u-u_{h}\right)_{t}\right\|+\left\|\left(\widetilde{u}_{h}-u\right)_{t}\right\|\right)\|\psi\|_{1, q}
\end{aligned}
$$

where we have used the fact $\|\psi\| \leq\|\psi\|_{1, r}, r>1$

$$
\begin{aligned}
&\left|I_{3}\right| \leq \int_{0}^{t}\left(\left\|\left(u-u_{h}\right)(s)\right\|_{1, p}+\left\|\left(u-\widetilde{u}_{h}\right)(s)\right\|_{1, p}\right) d s\|\psi\|_{1, q} \\
&\left\|\left(\widetilde{u}_{h}-u_{h}\right)_{x}\right\|_{0, p}=\sup _{\varphi \in \mathcal{C}_{0}^{\infty}} \frac{\left(\left(\widetilde{u}_{h}-u_{h}\right)_{x}, \varphi\right)}{\|\varphi\|_{0, q}} \\
& \leq C\binom{h\left\|u-u_{h}\right\|_{1, p}+\left\|\left(u-u_{h}\right)_{t}\right\|+\left\|\left(\widetilde{u}_{h}-u\right)_{t}\right\|}{+\int_{0}^{t}\left(\left\|\left(u-u_{h}\right)(s)\right\|_{1, p}+\left\|\left(u-\widetilde{u}_{h}\right)(s)\right\|_{1, p}\right) d s} .
\end{aligned}
$$

We deduce the result from the known finite element estimates.

Remark 4.6. In order to estimate $\left\|\left(u-u_{h}\right)_{t}\right\|$, by differentiating (4.1) with respect to t we obtain

$$
\begin{aligned}
\left(\theta_{t t}, I_{h}^{*} v_{h}\right)+A\left(\theta_{t}, I_{h}^{*} v_{h}\right)+B\left(t, t ; \theta, I_{h}^{*} v_{h}\right) & +\int_{0}^{t} B_{t}\left(t, s ; \theta(s), I_{h}^{*} v_{h}\right) d s \\
& =-\left(\rho_{t t}, I_{h}^{*} v_{h}\right) .
\end{aligned}
$$

Setting $v_{h}=\theta_{t}$, we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|\left\|\theta_{t}\right\|\right\|^{2}+c\left\|\theta_{t}\right\|_{1}^{2} \\
& \leq\left\|\rho_{t t}\right\|\left\|\theta_{t}\right\|+\frac{1}{2} c\left\|\theta_{t}\right\|_{1}^{2}+C\|\theta\|_{1}^{2}+\int_{0}^{t}\|\theta\|_{1}^{2} d s \\
& \leq\left\|\rho_{t t}\right\|\left\|\theta_{t}\right\|+\frac{1}{2} c\left\|\theta_{t}\right\|_{1}^{2}+C \int_{0}^{t}\left\|\theta_{t}\right\|_{1}^{2} d s .
\end{aligned}
$$

Using kickback argument, integrating and applying Grönwall's lemma, we deduce

$$
\left\|\theta_{t}\right\| \leq C\left(\left\|\theta_{t}(0)\right\|+\int_{0}^{t}\left\|\rho_{t t}\right\| d s\right)
$$

5. The lumped mass finite volume element method

In this section, we restrict our study to the case 2-D. A simple way to define the lumped mass scheme is to replace the mass matrix M_{h} in (2.5) by the diagonal matrix \bar{M}_{h} obtained by taking for its diagonal elements the numbers $\bar{M}_{h i i}=\sum_{j=1}^{N_{h}} M_{h i j}$, or by lumping all masses in one row into the diagonal entry. This makes the inversion of the matrix in front of $\alpha^{\prime}(t)$ a triviality.

We shall thus study the matrix problem

$$
\begin{equation*}
\bar{M}_{h} \alpha^{\prime}(t)+A_{h} \alpha(t)+\int_{0}^{t} B_{h}(t, s) \alpha(s) d s=F_{h}(t) . \tag{5.1}
\end{equation*}
$$

We know that the lumped mass method defined by (5.1) above is equivalent to

$$
\begin{equation*}
\left(I_{h}^{*} u_{h t}, I_{h}^{*} v_{h}\right)+A\left(u_{h}, I_{h}^{*} v_{h}\right)+\int_{0}^{t} B\left(t, s ; u_{h}(s), I_{h}^{*} v_{h}\right) d s=\left(f, I_{h}^{*} v_{h}\right), v_{h} \in S_{h} \tag{5.2}
\end{equation*}
$$

Our alternative interpretation of this procedure will be to think of (5.1) as being obtained by evaluating the first term in (5.2) by numerical quadrature. Let K be a triangle of the triangulation T_{h}, let $x_{j}, j=1,2,3$, be its vertices, and consider the quadrature formula

$$
Q_{K, h}(f)=\frac{1}{3} \text { area } K \sum_{j=1}^{3} f\left(x_{j}\right) \simeq \int_{K} f d x .
$$

We may then define the associated bilinear form in $S_{h} \times S_{h}^{*}$, using the quadrature scheme, by

$$
\begin{aligned}
\left(v_{h}, \eta_{h}\right)_{h} & =\sum_{K \in T_{h}} Q_{K, h}\left(v_{h} \eta_{h}\right) \\
& =\sum_{x_{i} \in N_{h}^{\grave{a}}} v_{h}\left(x_{i}\right) \eta_{h}\left(x_{i}\right)\left|V_{x_{i}}\right|, \forall v_{h} \in S_{h}, \eta_{h} \in S_{h}^{*} .
\end{aligned}
$$

We note that $\left\|v_{h}\right\|_{h}^{2}=\left(v_{h}, I_{h}^{*} v_{h}\right)_{h}$ is a norm in S_{h} which is equivalent with the L^{2} - norm uniformly in h, i.e there exist two positive constants C_{1} and C_{2} such that for all $v_{h} \in S_{h}$, we have

$$
C_{0}\left\|v_{h}\right\| \leq\left\|v_{h}\right\|_{h} \leq C_{1}\left\|v_{h}\right\|, \quad \forall v_{h} \in S_{h}
$$

We note that the above definition $\left(v_{h}, \eta_{h}\right)_{h}$ may be used also for $\eta_{h} \in S_{h}$, and that $\left(v_{h}, w_{h}\right)_{h}=\left(v_{h}, I_{h}^{*} w_{h}\right)_{h}$ for $v_{h}, w_{h} \in S_{h}$.

The lumped mass method defined by (5.2) above is equivalent to

$$
\begin{equation*}
\left(u_{h t}, I_{h}^{*} v_{h}\right)_{h}+A\left(u_{h}, I_{h}^{*} v_{h}\right)+\int_{0}^{t} B\left(t, s ; u_{h}(s), I_{h}^{*} v_{h}\right) d s=\left(f, I_{h}^{*} v_{h}\right), \quad v_{h} \in S_{h} \tag{5.3}
\end{equation*}
$$

We introduce the quadrature error

$$
\varepsilon_{h}\left(v_{h}, w_{h}\right)=\left(v_{h}, w_{h}\right)_{h}-\left(v_{h}, w_{h}\right),
$$

Lemma 5.1 ([22]). Let $v_{h}, w_{h} \in S_{h}$. Then

$$
\left|\varepsilon_{h}\left(v_{h}, w_{h}\right)\right| \leq C h^{2}\left\|\nabla v_{h}\right\|\left\|\nabla w_{h}\right\|
$$

Theorem 5.2. Let u_{h} and u be the solutions of (5.3) and (2.2) respectively, Assume that $u \in L^{\infty}\left(H_{0}^{1} \cap H^{2}\right), u_{t} \in L^{\infty}\left(H^{2}\right), u_{t t} \in L^{\infty}\left(H^{1}\right), f, f_{t} \in L^{\infty}\left(H^{1}\right)$ and $u_{h}(0)=$ $R_{h} u_{0}$. Then we have for the error in the lumped mass semi discrete method, for $t \geq 0$,

$$
\left\|u_{h}(t)-u(t)\right\| \leq C h^{2}\left(\int_{0}^{t}\left(\|f\|_{1}+\left\|f_{t}\right\|_{1}+\|u\|_{2}+\left\|u_{t}\right\|_{2}+\left\|u_{t t}\right\|_{1}\right) d s\right)
$$

Proof. In order to estimate $\|\theta\|$, we write

$$
\begin{aligned}
& \left(\theta_{t}, I_{h}^{*} v_{h}\right)_{h}+A\left(\theta, I_{h}^{*} v_{h}\right)+\int_{0}^{t} B\left(t, s ; \theta(s), I_{h}^{*} v_{h}\right) d s \\
& =\left(u_{h t}, I_{h}^{*} v_{h}\right)_{h}+A\left(u_{h}, I_{h}^{*} v_{h}\right)+\int_{0}^{t} B\left(t, s ; u_{h}(s), I_{h}^{*} v_{h}\right) d s \\
& -\left(\left(V_{h} u\right)_{t}, I_{h}^{*} v_{h}\right)_{h}-A\left(V_{h} u, I_{h}^{*} v_{h}\right)-\int_{0}^{t} B\left(t, s ; V_{h} u(s), I_{h}^{*} v_{h}\right) d s \\
& =\left(f, I_{h}^{*} v_{h}\right)-\left(\left(V_{h} u\right)_{t}, I_{h}^{*} v_{h}\right)_{h}-A\left(u, I_{h}^{*} v_{h}\right)-\int_{0}^{t} B\left(t, s ; u(s), I_{h}^{*} v_{h}\right) \\
& =\left(u_{t}, I_{h}^{*} v_{h}\right)-\left(\left(V_{h} u\right)_{t}, I_{h}^{*} v_{h}\right)_{h} \\
& =-\left(\rho_{t}, I_{h}^{*} v_{h}\right)-\left(\left(V_{h} u\right)_{t}, I_{h}^{*} v_{h}\right)_{h}+\left(\left(V_{h} u\right)_{t}, I_{h}^{*} v_{h}\right)
\end{aligned}
$$

We rewrite

$$
\begin{align*}
&\left(\left(V_{h} u\right)_{t}, I_{h}^{*} v_{h}\right)_{h}-\left(\left(V_{h} u\right)_{t}, I_{h}^{*} v_{h}\right)=\left(\left(V_{h} u\right)_{t}, I_{h}^{*} v_{h}\right)_{h}-\left(\left(V_{h} u\right)_{t}, v_{h}\right) \\
&+\left(\left(V_{h} u\right)_{t}, v_{h}\right)-\left(\left(V_{h} u\right)_{t}, I_{h}^{*} v_{h}\right) \\
&=\varepsilon_{h}\left(\left(V_{h} u\right)_{t}, v_{h}\right)+\left(\left(V_{h} u\right)_{t}, v_{h}\right) \\
&-\left(\left(V_{h} u\right)_{t}, I_{h}^{*} v_{h}\right) . \\
&\left(\theta_{t}, I_{h}^{*} v_{h}\right)_{h}+A\left(\theta, I_{h}^{*} v_{h}\right)+\int_{0}^{t} B\left.B, s ; \theta(s), I_{h}^{*} v_{h}\right) d s \tag{5.4}\\
&=-\left(\rho_{t}, I_{h}^{*} v_{h}\right)+\varepsilon_{h}\left(\left(V_{h} u\right)_{t}, v_{h}\right)+\left(\left(V_{h} u\right)_{t}, v_{h}\right)-\left(\left(V_{h} u\right)_{t}, I_{h}^{*} v_{h}\right) .
\end{align*}
$$

Setting $v_{h}=\theta$ in (5.4), we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\|\theta\|_{h}^{2}+c_{0}\|\theta\|_{1}^{2} \\
& \leq\left\|\rho_{t}\right\|\|\theta\|+\frac{1}{2} c_{0}\|\theta\|_{1}^{2}+C \int_{0}^{t}\|\theta\|_{1}^{2} d s \\
& +\varepsilon_{h}\left(\left(V_{h} u\right)_{t}, \theta\right)+\left(\left(V_{h} u\right)_{t}, \theta\right)-\left(\left(V_{h} u\right)_{t}, I_{h}^{*} \theta\right) .
\end{aligned}
$$

And, using lemma 10 and the inverse estimate, we get

$$
\begin{aligned}
\left|\varepsilon_{h}\left(\left(V_{h} u\right)_{t}, \theta\right)\right| & \leq C h^{2}\left\|\nabla\left(V_{h} u\right)_{t}\right\|\|\nabla \theta\| \\
& \leq C h^{2}\left(\left\|\rho_{t}\right\|_{1}+\left\|u_{t}\right\|_{1}\right)\|\nabla \theta\| \\
& \leq C h\left(\left\|\rho_{t}\right\|_{1}+\left\|u_{t}\right\|_{1}\right)\|\theta\|
\end{aligned}
$$

we have

$$
\left|\left(\left(V_{h} u\right)_{t}, \theta\right)-\left(\left(V_{h} u\right)_{t}, I_{h}^{*} \theta\right)\right| \leq C h\left(\left\|\rho_{t}\right\|_{1}+\left\|u_{t}\right\|_{1}\right)\|\theta\| .
$$

Using Young's inequality and Grönwall lemma to eliminate $\|\theta\|_{1}$ on the right hand side it becomes

$$
\frac{1}{2} \frac{d}{d t}\|\theta\|_{h}^{2}+c\|\theta\|_{1} \leq\left\|\rho_{t}\right\|\|\theta\|+C h\left(\left\|\rho_{t}\right\|_{1}+\left\|u_{t}\right\|_{1}\right)\|\theta\| .
$$

Using Young's inequality to eliminate $\|\theta\|$ on the right hand side it becomes.
Using integration in t, we get the result.
We will now show that the H^{1}-norm error bound of theorem remains valid for the Lumped mass method (5.3).

Theorem 5.3. Let u_{h} and u be the solutions of (5.3) and (2.2), respectively, under the assumptions of theorem and assume

$$
u_{h}(0)=R_{h} u_{0}, \quad\left\|u_{1 h}(0)-u_{1}\right\| \leq C h^{2}\left\|u_{1}\right\|_{2} .
$$

Then we have for the error in the lumped mass semi discrete method, for $t \geq 0$,

$$
\left\|u_{h}(t)-u(t)\right\|_{1} \leq C h\left(\left\|u_{0}\right\|_{2}+\left\|u_{1}\right\|_{2}+\int_{0}^{t}\|f\|_{1}+\left\|f_{t}\right\|_{1}+\left\|u_{t t}\right\|_{2} d s\right) .
$$

Proof. Setting $v_{h}=\theta_{t}$ in(5.4) we obtain

$$
\begin{aligned}
& \left\|\theta_{t}\right\|_{h}^{2}+\frac{1}{2} \frac{d}{d t} A\left(\theta, I_{h}^{*} \theta\right) \\
& =\frac{1}{2}\left[A\left(\theta_{t}, I_{h}^{*} \theta\right)-A\left(\theta, I_{h}^{*} \theta_{t}\right)\right] \\
& B\left(t, t ; \theta(t), I_{h}^{*} \theta(t)\right)+\int_{0}^{t} B_{t}\left(t, s ; \theta(s), I_{h}^{*} \theta(t)\right) d s \\
& -\frac{d}{d t} \int_{0}^{t} B\left(t, s ; \theta(s), I_{h}^{*} \theta(t)\right) d s-\left(\rho_{t}, I_{h}^{*} \theta_{t}\right) \\
& -\varepsilon_{h}\left(\left(V_{h} u\right)_{t}, \theta_{t}\right)+\left(\left(V_{h} u\right)_{t}, \theta\right)-\left(\left(V_{h} u\right)_{t}, I_{h}^{*} \theta\right)
\end{aligned}
$$

It follows thus that and using integration in t and Grönwall lemma, we have

$$
\begin{aligned}
\int_{0}^{t}\left\|\theta_{t}\right\|_{h}^{2}+\|\theta\|_{1}^{2} \leq & C\|\nabla \theta(0)\|^{2}+C \int_{0}^{t}\left\|\rho_{t}\right\|^{2}+\left\|\theta_{t}\right\|+\|\theta\| d s \\
& +C h\left(\left\|\rho_{t}\right\|_{1}+\left\|u_{t}\right\|_{1}\right)\|\theta\|
\end{aligned}
$$

This completes the proof.

6. Full Discretization

Let $\bar{\partial} U^{n}=\left(U^{n}-U^{n-1}\right) / k$ be the backward difference quotient of U^{n}, assume that $A_{h}=P_{h} A$ is a discrete analogue of A (similarly $B_{h}=P_{h} B$), where $P_{h}: L^{2}(\Omega) \rightarrow S_{h}^{*}$ the L^{2} projection defined by

$$
\left(P_{h} v, I_{h}^{*} v_{h}\right)=\left(v, I_{h}^{*} v_{h}\right), \quad v \in L^{2}(\Omega), v_{h} \in S_{h}
$$

In order to define fully-discrete approximation of (2.3), we discretize the time by taking $t_{n}=n k, k>0, n=1,2, \ldots$ and use numerical quadrature

$$
\int_{0}^{t_{n-\frac{1}{2}}} g(s) d s \sum_{k-1}^{n} \omega_{n, k} g\left(t_{k-1 / 2}\right), t_{n-\frac{1}{2}}=\left(n-\frac{1}{2}\right) k .
$$

Here $\left\{\omega_{n, k}\right\}$ are the integration weights and we assume that the following error estimate is valid

$$
q^{n}(g)=\int_{0}^{t_{n-\frac{1}{2}}} g(s) d s-\sum_{k=1}^{n} \omega_{n, k} g\left(t_{k-1 / 2}\right) \leq C k^{2} \int_{0}^{t_{n}}\left(\left|g^{\prime}\right|+\left|g^{\prime \prime}\right|\right) d s
$$

Now define our complete discrete finite volume element approximation of (2.3) by: Find $U^{n} \in S_{h}$ for $n=1,2, .$. , such that for all $v_{h} \in S_{h}$

$$
\begin{align*}
\left(\bar{\partial} U^{n}, I_{h}^{*} v_{h}\right)+A\left(U^{n-\frac{1}{2}}, I_{h}^{*} v_{h}\right) & +\sum_{k=1}^{n} \omega_{n, k} B\left(t_{n-\frac{1}{2}}, t_{k-1 / 2}, U^{k-1 / 2}, I_{h}^{*} v_{h}\right) \tag{6.1}\\
& =\left(f^{n-\frac{1}{2}}, I_{h}^{*} v_{h}\right), \quad U^{0} \in S_{h}
\end{align*}
$$

where $U^{n-\frac{1}{2}}=\left(U^{n}+U^{n-1}\right) / 2$.

Theorem 6.1. Let $u(t)$ and U^{n} be the solutions of problem (2.2) and its complete discrete scheme (6.1) respectively. Then for any $T>0$ there exists a positive constant $C=C(T)>0$, independent of h, such that for $0<t_{n} \leq T$

$$
\begin{aligned}
\left\|u\left(t_{n}\right)-U^{n}\right\| & \leq C h^{2}\left(\left\|u_{0}\right\|_{2}+\int_{0}^{t_{n}}\left\|u_{t}\right\|_{2} d s\right) \\
& +C k^{2}\left(\int_{0}^{t_{n}}\left(\left\|f_{t}\right\|_{1}+\|u\|_{2}+\left\|u_{t}\right\|_{2}+\left\|u_{t t}\right\|_{2}+\left\|u_{t t t}\right\|\right) d s\right)
\end{aligned}
$$

Proof. Let us split the error into two parts: $u\left(t_{n}\right)-U^{n}=\rho^{n}+\theta^{n}$, where $\rho^{n}=$ $u\left(t_{n}\right)-V_{h} u\left(t_{n}\right)$ and $\theta^{n}=V_{h} u\left(t_{n}\right)-U^{n}$ and let $W=V_{h} u(t) \in S_{h}$ be the RitzVolterra projection of u. Then from (2.2) and (6.1) we have for all $v_{h} \in S_{h}$

$$
\begin{align*}
\left(\bar{\partial} \theta^{n}, I_{h}^{*} v_{h}\right)+A\left(\theta^{n-1 / 2}, I_{h}^{*} v_{h}\right) & +\sum_{k=1}^{n} \omega_{n, k} B\left(t_{n-\frac{1}{2}}, t_{k-1 / 2}, \theta^{k-1 / 2}, I_{h}^{*} v_{h}\right) \tag{6.2}\\
& =-\left(r_{n}, I_{h}^{*} v_{h}\right), v_{h} \in S_{h}
\end{align*}
$$

where

$$
r_{n}=r_{n}^{1}+r_{n}^{2}+r_{n}^{3}+r_{n}^{4}
$$

and

$$
\begin{aligned}
r_{n}^{1} & =\bar{\partial} \rho^{n} \\
r_{n}^{2} & =\bar{\partial} u\left(t_{n}\right)-u_{t}\left(t_{n-\frac{1}{2}}\right), \\
r_{n}^{3} & =A\left(\left(u\left(t_{n}\right)+u\left(t_{n-1}\right)\right) / 2-u\left(t_{n-\frac{1}{2}}\right), I_{h}^{*} v_{h}\right), \\
r_{n}^{4} & =q^{n}\left(B_{h} W\right) \\
& =\sum_{k=1}^{n} \omega_{n, k} B_{h}\left(t_{n-\frac{1}{2}}, t_{k-1 / 2}, W^{k-1 / 2}, I_{h}^{*} v_{h}\right) \\
& -\int_{0}^{t_{n-\frac{1}{2}}} B\left(t_{n}, s, W(s), I_{h}^{*} v_{h}\right) d s
\end{aligned}
$$

In fact, by Taylor expansion,

$$
\begin{aligned}
u^{n+1} & =u^{n}+k u^{\prime}\left(t_{n}\right)+\int_{t_{n}}^{t_{n+1}} u^{\prime \prime}(s)\left(t_{n+1}-s\right) d s \\
& =u^{n}+k u^{\prime}\left(t_{n}\right)+\frac{k^{2}}{2} u^{\prime \prime}\left(t_{n}\right)+\frac{k^{3}}{6} u^{(3)}\left(t_{n}\right) \\
& +\frac{1}{6} \int_{t_{n}}^{t_{n+1}} u^{(4)}(s)\left(t_{n+1}-s\right)^{3} d s
\end{aligned}
$$

we have

$$
\left\|r_{n}^{1}\right\|=\left\|\bar{\partial} \rho^{n}\right\| \leq \frac{1}{k} \int_{t_{n-1}}^{t_{n}}\left\|\rho_{t}\right\| d s \leq C \frac{h^{2}}{k} \int_{t_{n-1}}^{t_{n}}\left(\left\|f_{t}\right\|_{1}+\left\|u_{t t}\right\|_{2}\right) d s
$$

$$
\begin{aligned}
\left\|r_{n}^{2}\right\| & =\left\|\bar{\partial} u\left(t_{n}\right)-u_{t}\left(t_{n-\frac{1}{2}}\right)\right\| \\
& =\frac{1}{k}\left\|\int_{t_{n-1}}^{t_{n}}\left(u_{t}(s)-u_{t}\left(t_{n-\frac{1}{2}}\right)\right) d s\right\| \leq C k \int_{t_{n-1}}^{t_{n}}\left\|u^{(3)}(s)\right\| d s
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|r_{n}^{3}\right\| & =\left\|A\left(\frac{u\left(t_{n}\right)+u\left(t_{n-1}\right)}{2}-u\left(t_{n-\frac{1}{2}}\right), I_{h}^{*} v_{h}\right)\right\| \\
& \leq C k \int_{t_{n-1}}^{t_{n}}\left\|A u_{t t}(s)\right\| d s \leq C k \int_{t_{n-1}}^{t_{n}}\left\|u_{t t}\right\|_{2} d s
\end{aligned}
$$

In addition, the quadrature error satisfies

$$
\begin{aligned}
&\left\|r_{n}^{4}\right\|=q^{n-\frac{1}{2}}\left(B_{h} W\right) \\
&=\sum_{k=1}^{n} \omega_{n, k} B\left(t_{n-\frac{1}{2}}, t_{k-1 / 2}, W^{k-1 / 2}, I_{h}^{*} v_{h}\right) \\
&-\int_{0}^{t_{n-\frac{1}{2}}} B\left(t_{n}, s, W(s), I_{h}^{*} v_{h}\right) d s \\
& \leq C k^{2} \int_{0}^{t_{n}}\left\|\left(B_{h} W\right)_{s s}\right\| d s \\
& \leq C k^{2} \int_{0}^{t_{n}}\left(\|u\|_{2}+\left\|u_{t}\right\|_{2}+\left\|u_{t t}\right\|_{2}\right) d s \\
& k \sum_{n=1}^{N}\left\|r_{n}\right\| \leq C h^{2} \int_{0}^{t_{n}}\left\|u_{t t}\right\|_{2} d s \\
& \quad+C k^{2} \int_{0}^{t_{n}}\left(\|u\|_{2}+\left\|u_{t}\right\|_{2}+\left\|u_{t t}\right\|_{2}+\left\|u^{(3)}\right\|\right) d s
\end{aligned}
$$

Taking $v_{h}=\theta^{n-1 / 2}$ in (6.2) and noting that $\left(\bar{\partial} \theta^{n}, I_{h}^{*} \theta^{n-1 / 2}\right)=\frac{1}{2} \bar{\partial}\| \| \theta^{n}\| \|^{2}$ there is

$$
\begin{aligned}
& \left\|\theta ^ { n } \left|\| \|^{2}-\left\|\mid \theta^{n-1}\right\|\left\|^{2}+2 k c\right\| \theta^{n-1 / 2}\| \|_{1}^{2}\right.\right. \\
& \leq C k^{2} \sum_{k=1}^{n}\left\|\theta^{k-1 / 2}\right\|_{1}\left\|\theta^{n-1 / 2}\right\|_{1}+C k\left\|r_{n}\right\|\left\|\theta^{n-1 / 2}\right\| \\
& \leq k c\left\|\theta^{n-1 / 2}\right\|\left\|_{1}^{2}+C k^{2} \sum_{k=1}^{n}\right\| \theta^{k-1 / 2}\left\|_{1}^{2}+C k\right\| r_{n}\| \| \theta^{n-1 / 2} \| .
\end{aligned}
$$

Summing from $n=1$ to N, and then, after cancelling the common factor and using Grönwall lemma, we obtain

$$
\left\|\left|\theta^{N}\| \|^{2} \leq C\left\|\mid \theta^{0}\right\|\left\|^{2}+C k \sum_{k=1}^{N}\right\| r_{n} \|\left(\left\|\theta^{k}\right\|+\left\|\theta^{k-1 / 2}\right\|\right)\right.\right.
$$

and then

$$
\left\|\left|\left|\theta^{N}\||\leq C|\| \theta^{0}\left\|\mid+C k \sum_{n=1}^{N}\right\| r_{n} \| .\right.\right.\right.
$$

The theorem follows from the estimates of ρ^{n} and r^{n}.

7. Conclusion

In this work, our main aim is to construct and analyze the FVE scheme for solving for convection-diffusion-reaction equations with memory by using the transfer operator. We give the detailed construction for the semi-discrete, modified lumped mass, and fully discrete schemes. For the spatially discrete and modified lumped mass schemes, we obtain optimal order error estimates in L^{2}, H^{1}, and $W^{1, p}$ norms for $2 \leq p<\infty$. Based on the Crank-Nicolson method, a fully discrete scheme is discussed, and related error estimates are derived.

Acknowledgment

The authors would like to thank the anonymous reviewers for their constructive comments to improve the quality of this work.

References

[1] M. Bahaj and A. Rachid, On the Finite Volume Element Method for Self-Adjoint Parabolic Integrodifferential Equations, Journal of Mathematics, (2013), Article ID 464893.
[2] M. Berggren, A vertex-centered, dual discontinuous Galerkin method, J. Comput. Appl. Math., 192 (2006), 175-181.
[3] Z. Cai, On the finite volume method, Numer. Math, 58 (1991), 713-735.
[4] P. Chatzipantelidies, A finite volume method based on the Crouziex-Raviart element for elliptic PDE's in two dimension, Numer. Math, 82 (1999), 409-432.
[5] P. Chatzipantelidis, Finite volume methods for elliptic PDE's: A new approach, Mathematical modelling and Numerical Analysis, 36 (2002), 307-324.
[6] P. Chatzipantelidis, R.D. Lazarov, and V. Thomée, Error estimate for a finite volume element method for parabolic equations in convex polygonal domains, Numer. Meth. PDEs, 20 (2004), 650-674.
[7] C. Chen and T. Shih, Finite element methods for integrodifferential equations, world Scientific Singapore, 1997.
[8] S. H. Chou, Analysis and convergence of a covolume method for the generalized Stokes problem, Math. Comp, 66 (1997), 85-104.
[9] S. H. Chou, D. Y. Kwak, Analysis and convergence of the MAC scheme for the generalized Stokes problem, Numer.Meth.PDEs, 13 (1997), 147-162.
[10] S. H. Chou, D. Y. Kwak, Multigrid algorithms for a vertex-centered covolume method for elliptic problems. Numer. Math, 90 (2002), 441-458.
[11] S. H. Chou, D. Y. Kwak, and Q. Li, L^{p} error estimates and superconvergence for covolume or finite volume element methods, Numer. Methods PDEs, 19 (2002), 463-486.
[12] R. E. Ewing, R. D. Lazarov, and Y. Lin, Finite Volume element approximations of nonlocal in time one-dimensional flows in porous media, Computing, 64 (2000), 157-182.
[13] R. E. Ewing, R. D. Lazarov, and Y. Lin, Finite Volume element approximations of nonlocal reactive flows in porous media, Numer. Methods Partial Differential Equations, 16 (2000), 285311.
[14] R. E. Ewing, T. Lin, and Y. Lin, On the accuracy of the finite Volume element method based on piecewise linear polynomials, SIAM J. Numer. Anal, 39 (2002), 1865-1888.
[15] R. Eymard, T. Gallouët, and R. Herbin, Finite Volume Methods: Handbook of Numerical Analysis, North-Holland, Amsterdam, 2000.
[16] R. D. Lazarov and S. Z. Tomov, Adaptive finite volume element method for convection-diffusionreaction problems in 3-D, in Scientific Computing and Application, Advances in Computation Theory and Practice NOVA Science Publ., Inc New York, 7 (2001), 91-106.
[17] H. Jianguo and X. Shitong, on the finite volume element method for general self-adjoint elliptic problems, SIAM J. Numer. Anal, 35 (1998), 1762-1774.
[18] Y. Lin, V. Thomé, and L. B Wahlbin, Ritz-Volterra projections to finite element spaces and applications to integro-differential and related equations, SIAM J. Numer. Anal, 28 (1991), 1047-1070.
[19] X. Ma, S. Shu, and A Zhou, symmetric finite volume discretizations for parabolic problems, Comput. Methods Appl. Mech. engrg, 192 (2003), 4467-4485.
[20] I. D. Mishev, Finite volume and finite volume element methods for non-symmetric problems, Texas A\&M Univ, Ph.D. Thesis, 1997, Tech Rept ISC-96-04-MATH.
[21] R. K. Sinha and J. Geiser, Error estimates for finite volume element methods for convection-diffusion-reaction equations, Appl. num Math, 57 (2007), 59-72.
[22] V. Thomée, Galerkin finite element methods for parabolic problems, (Springer series computational mathematics), Springer Verlag New York, Inc., Secaucus, NJ, 2006.
[23] V. R. Voller, Basic Control Volume Finite Element Methods For Fluids And Solids, World Scientific, 2009.

[^0]: Received: 05 November 2018 ; Accepted: 17 November 2020.

 * corresponding.

