- [1] E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, Journal of Mathematical Analysis and Applications, 325(1) (2007), 542-553.
- [2] W. C. Allee and E. Bowen, Studies in animal aggregations: mass protection against colloidal silver among goldfishes, Journal of Experimental Zoology, 61 (1932), 185–207.
- [3] K. T. Alligood, D. S. Tim, and J. Yorke, Chaos, Springer Berlin Heidelberg, 1997.
- [4] O. A. Arqub and A. El-Ajou, Solution of the fractional epidemic model by homotopy analysis method, Journal of King Saud University-Science, 25 (2013), 73-81.
- [5] A. Atabaigi, Bifurcation and chaos in a discrete time predator-prey system of Leslie type with generalized Holling type III functional response, Journal of Applied Analysis and Computation, 7(2) (2017), 411-426.
- [6] A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific, Singapore, 1998.
- [7] A. Ben Saad and O. Boubaker, On Bifurcation Analysis of the Predator-Prey BB-model with Weak Allee Effect, 16th international conference on Sciences and Techniques of Automatic control & computer engineering - STA’2015, Monastir, Tunisia, December 21-23, 2015.
- [8] R. L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley, 1989.
- [9] S. Elaydi, An introduction to difference equations, Springer Science Business Media, New York, 2005.
- [10] A. A. Elsadany and A. E. Matouk, Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization, Journal of Applied Mathematics and Computing, 49(2015), 269-283.
- [11] E. Gonz´alez-Olivares, J. Mena-Lorca, A. Rojas-Palma, and J. D. Flores, Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey Citation data, Applied Mathematical Modelling, 35(1) (2011), 366-381.
- [12] J. Guckenheimer and P. Holmes, Nonlinear Oscillation, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 1983.
- [13] J. He, S. Yu, and J. Cai, Numerical Analysis and Improved Algorithms for Lyapunov-Exponent Calculation of Discrete-Time Chaotic Systems, International Journal of Bifurcation and Chaos, 26(13) (2016), 1650219.
- [14] C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, and J. H. T. Bates, The Role of Fractional Calculus in Modelling Biological Phenomena: A review, Communications in Nonlinear Science and Numerical Simulation, 51(2017), 141-159.
- [15] S. Kartala and F. Gurcan, Stability and bifurcations analysis of a competition model with piece- wise constant arguments, Mathematical Methods in the Applied Sciences, 38(9) (2014), 1855– 1866.
- [16] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer Science and Business Media, 2013.
- [17] X. Liu and X. Dongmei, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos Solitons and Fractals, 32(1) (2007), 80-94.
- [18] G. Livadiotis and D. J. McComas, Measure of the departure of the q-metastable stationary states from equilibrium, Physica Scripta, 8(2010), 035003.
- [19] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925.
- [20] D. Matignon, Stability results for fractional differential equations with applications to control processing, Computational Engineering in System Application, 2(1) (1996), 963-968.
- [21] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, NJ, 2001.
- [22] J. D. Murray, Mathematical Biology I: An Introduction, Springer Science & Business Media, 2007.
- [23] I. Petr´aˇs, Fractional-order nonlinear systems: modeling, analysis and simulation, Springer Sci- ence & Business Media, 2011.
- [24] E. C. Pielou, An Introduction to Mathematical Ecology, Wiley, New York, 1969.
- [25] I. Podlubny, Fractional Differential Equations, New York, Academic Press, 1999.
- [26] M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, American Naturalist, 97(1963), 209-223.
- [27] V. K. Srivastava, S. Kumar, M. K. Awasthi, and B. K. Singh, Two-dimensional time fractional- order biological population model and its analytical solution, Egyptian Journal of Basic and Applied Sciences, 1(2014), 71-76.
- [28] J. P. Tripathi, S. S. Meghwani, M. Thakur, and S. Abbas, A modified Leslie-Gower predator- prey interaction model and parameter identifiability, Communications in Nonlinear Science and Numerical Simulation, 54(2018), 331-346.
- [29] G. A. K. Van Voorn, L. Hemerik, M. P. Boer, and B. W. Kooi, Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect, Mathematical Biosciences, 209(2007), 451-469.
- [30] V. Volterra, Variazioni e fluttuazioni del numero di individui in specie animali conviventi, C. Ferrari, 1927.
|