تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,487,045 |
تعداد دریافت فایل اصل مقاله | 15,213,993 |
تحلیل کمانش ورقهای چندلایه کامپوزیتی دارای گشودگی دایروی به روشهای نیمهتحلیلی، اجزاء محدود و تجربی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 10، دوره 51، شماره 3 - شماره پیاپی 96، آبان 1400، صفحه 79-88 اصل مقاله (482.26 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2021.11220 | ||
نویسندگان | ||
تقی شجاعی1؛ بیژن محمدی* 2؛ ایمان زیدآبادی نژاد3؛ رامین صفاری4 | ||
1دکتری، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران | ||
2دانشیار، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران | ||
3کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران | ||
4کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران، ایران | ||
چکیده | ||
در این پژوهش، رفتار کمانش ورق کامپوزیتی مستطیلی شکل دارای گشودگی دایروی کوچک با وجود شرایط تکیه گاهی دو طرف ساده و دو طرف آزاد (SS-FF) با آزمون های تجربی بررسی شده و نتایج حاصل با روشهای تمام انرژی، نیمهتحلیلی و اجزاء محدود مقایسه شده است.نتایج تجربی با استفاده از یک فیکسچر نوآوری شده که شرایط مرزی را بهخوبی ارضاء می کند، بهدست آمده است. در روش نیمهتحلیلی، تابع تنش ایری ورق، متناسب با شرایط تنشی در صفحه محاسبه شده و توزیع تنش ورق در بررسی کمانش اعمال شده است. نتایج بهدست آمده نشاندهنده تأثیر قطر گشودگی و ضخامت ورق بر رفتار کمانش ورق کامپوزیتی است. با بررسی نتایج نشان داده شده است که روش نیمهتحلیلی دقت بیشتری نسبت به روشهای تمام انرژی و اجزاء محدود دارد. فیکسچر نوآوری شده برای چندلایههای باضخامت کم نتایج بسیار دقیقی را به دنبال داشته است و با افزایش ضخامت، اختلاف نتایج آزمونهای آزمایشگاهی با نتایج نیمهتحلیلی و اجزاء محدود بیشتر شده است. | ||
کلیدواژهها | ||
کمانش؛ شرایط مرزی ساده؛ المان محدود؛ حل نیمهتحلیلی؛ چندلایه کامپوزیتی؛ گشودگی دایروی | ||
مراجع | ||
[1] Jones R. M., Mechanics of composite materials. CRC press, 2014. [2] Jamali M., Shojaee T., Kolahchi R., and Mohammadi B., "Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials," Steel and Composite Structures, Vol. 22, No. 3, pp. 691-712, 2016. [3]Shojaee T., Mohammadi B., Madoliat R., and Salimi-Majd D., Development of a finite strip method for efficient prediction of buckling and post-buckling in composite laminates containing a cutout with/without stiffener, Composite Structures, Vol. 210, pp. 538-552, 2019. [4] Prusty B. and Satsangi S., Finite element buckling analysis of laminated composite stiffened shells, International journal of crashworthiness, Vol. 6, No. 4, pp. 471-484, 2001. [5] Von Kármán T., Festigkeitsprobleme im maschinenbau. Teubner, 1910. [6] Martin J., Buckling and postbuckling of laminated composite square plates with reinforced central circular holes, 1972. [7] Herman R. J., "Postbuckling Behavior of Graphite/Epoxy Cloth Shear Panels with 45 deg-Flanged Lightening Holes," Naval postgraduate school Monterey CA1982. [8] LEE H. and Hyer M., Postbuckling failure of composite plates with holes, AIAA journal, Vol. 31, No. 7, pp. 1293-1298, 1993. [9] Noor A. K., Starnes J. H and Peters J. M., "Thermomechanical postbuckling of multilayered composite panels with cutouts," Composite structures, Vol. 30, No. 4, pp. 369-388, 1995. [10] Liu J.-S. and Hollaway L., Design optimisation of composite panel structures with stiffening ribs under multiple loading cases, Computers & Structures, Vol. 78, No. 4, pp. 637-647, 2000. [11] Lynch C., Murphy A., Price M., and Gibson A., "The computational post buckling analysis of fuselage stiffened panels loaded in compression," Thin-Walled Structures, Vol. 42, No. 10, pp. 1445-1464, 2004. [12] Nordstrand T., Analysis and testing of corrugated board panels into the post-buckling regime, Composite structures, Vol. 63, No. 2, pp. 189-199, 2004. [13] El-Sayad M. A. and Farag A. M., Semi-Analytical solution based on strip method for buckling and vibration of isotropic plate, Journal of Applied Mathematics, Vol. 2013, 2013. [14] Kumar D. and Singh S., Load interaction curves and postbuckling response of composite laminate with circular cutout under combined in-plane loading, Composites Part B: Engineering, Vol. 42, No. 5, pp. 1189-1195, 2011. [15] Abolghasemi S., Shaterzadeh A. and Rezaei R., Thermo-mechanical buckling analysis of functionally graded plates with an elliptic cutout,"Aerospace Science and Technology, Vol. 39, pp. 250-259, 2014. [16] Shaterzadeh A., Abolghasemi S., and Rezaei R., Finite element analysis of thermal buckling of rectangular laminated composite plates with circular cut-out, Journal of thermal stresses, Vol. 37, No. 5, pp. 604-623, 2014. [17] Shaterzadeh A., Rezaei R., and Abolghasemi S., Thermal buckling analysis of perforated functionally graded plates, Journal of Thermal Stresses, Vol. 38, No. 11, pp. 1248-1266, 2015. [18] Raju G., Wu Z., and Weaver P. M., Buckling and postbuckling of variable angle tow composite plates under in-plane shear loading," International Journal of Solids and Structures, Vol. 58, pp. 270-287, 2015. [19] Jamali M., Shojaee T., and Mohammadi B., Uniaxial buckling analysis comparison of nanoplate and nanocomposite plate with central square cut out using domain decomposition method, Journal of Applied and Computational Mechanics, Vol. 2, No. 4, pp. 230-242, 2016. [20] Nejati M., Dimitri R., Tornabene F., and Hossein M. Yas, Thermal buckling of nanocomposite stiffened cylindrical shells reinforced by functionally graded wavy carbon nanotubes with temperature-dependent properties, Applied Sciences, Vol. 7, No. 12, p. 1223, 2017. [21]Taheri-Behrooz F., Omidi M., and Shokrieh M., Experimental and numerical investigation of buckling behavior of composite cylinders with cutout, Thin-Walled Structures, Vol. 116, pp. 136-144, 2017. [22] Taheri-Behrooz F., Omidi M., and Shokrieh M. M., "Experimental and numerical examination of the effect of geometrical imperfection on buckling load in axially compressed composites cylinder with and without cutout," Modares Mechanical Engineering, Vol. 16, No. 6, pp. 367-377, 2016. [23] Talezadehlari A. and Rahimi G. H., Buckling analysis of perforated composite cylindrical shell using Generalized Differential Quadrature Method (GDQM), Modares Mechanical Engineering, Vol. 17, No. 11, pp. 385-396, 2018. [24] Talezadehlari A. and Rahimi G. H., The effect of geometrical imperfection on the axial buckling of unstiffened and stiffened composite cylinders with and without cutout, Modares Mechanical Engineering, Vol. 17, No. 7, pp. 245-256, 2017. [25] Ghannadpour S. and Shakeri M., A new method to investigate the progressive damage of imperfect composite plates under in-plane compressive load, AUT Journal of Mechanical Engineering, Vol. 1, No. 2, pp. 159-168, 2017. [26] Shojaee T., Mohammadi B., and Madoliat R., Experimental and numerical investigation of stiffener effects on buckling strength of composite laminates with circular cutout, Journal of Composite Materials, p. 0021998319874101, 2019. [27] Ghannadpour S., Ovesy H., and Zia-Dehkordi E., An exact finite strip for the calculation of initial post-buckling stiffness of shear-deformable composite laminated plates, Composite Structures, Vol. 108, pp. 504-513, 2014. [28] Kamareh F., Farrokhabadi A., and Rahimi G., Experimental and numerical investigation of skin/lattice stiffener debonding growth in composite panels under bending loading,"Engineering Fracture Mechanics, Vol. 190, pp. 471-490, 2018. [29] Shojaee T., Mohammadi B., and Madoliat R., Postbuckling Analysis of Laminated Composites with Cutout Using Experimental, Numerical, and Finite Strip Methods, Modares Mechanical Engineering, Vol. 19, No. 8, pp. 2067-2077, 2019. [30] Mozaffari A., Zakeri M., Katirae M., and Shojaee T., Study of stiffend composite panels buckling with and without cutouts by exprimental and numerical methods, 2016. [31] Assaee H. and Ovesy H., A multi‐term semi‐energy finite strip method for post‐buckling analysis of composite plates, International journal for numerical methods in engineering, Vol. 70, No. 11, pp. 1303-1323, 2007. [32] A. C. H. I. A. Linearly and Field V. S., International journal of mechanical engineering and technology (IJMET), Journal Impact Factor, Vol. 4, No. 5, pp. 37-48, 2013. [33] Kang J.-H., Exact solutions of stresses, strains, and displacements of a perforated rectangular plate by a central circular hole subjected to linearly varying in-plane normal stresses on two opposite edges, International Journal of Mechanical Sciences, Vol. 84, pp. 18-24, 2014. [34]Shojaee T., Mohammadi B., and Madoliat R., Experimental and numerical investigation of effects of stiffener in buckling resistance of square laminated composites with circular hole, 2019. | ||
آمار تعداد مشاهده مقاله: 324 تعداد دریافت فایل اصل مقاله: 205 |