تعداد نشریات | 44 |
تعداد شمارهها | 1,298 |
تعداد مقالات | 15,883 |
تعداد مشاهده مقاله | 52,116,578 |
تعداد دریافت فایل اصل مقاله | 14,887,929 |
کاربرد روشهای هیبریدی (هوای داغ- مایکروویو- مادون قرمز) جهت خشک کردن سیبزمینی و مطالعه ویژگیهای کیفی محصول خشکشده | ||
پژوهش های صنایع غذایی | ||
دوره 30، شماره 2، شهریور 1399، صفحه 143-161 اصل مقاله (1.81 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
هادی دهقانی خیاوی1؛ مریم خاکباز حشمتی* 1؛ جلال دهقاننیا* 1؛ حامد باغبان* 2 | ||
1گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز | ||
2گروه مهندسی نانوفناوری (نانو الکترونیک)، دانشکده مهندسی فناوری های نوین، دانشگاه تبریز | ||
چکیده | ||
زمینه مطالعاتی: خشک کردن یکی از رایجترین روشهای موجود برای افزایش مدت زمان ماندگاری موادغذایی به خصوص میوهها و سبزیها است. هدف: با استفاده از خشک کردن، فعالیت آبی موادغذایی کاهش مییابد و از فساد میکروبی آنها جلوگیری میشود. روش کار: در این پژوهش اثر روشهای مختلف خشک کردن (هوای داغ ۴۵ درجه سانتیگراد و سرعت هوای ۱ متر بر ثانیه، مایکروویو ۵۴۰ وات، مادون قرمز ۶۰۰ وات، هوای داغ ۴۵ درجه سانتیگراد- مایکروویو ۵۴۰ وات، هوای داغ ۴۵ درجه سانتیگراد- مادون قرمز ۶۰۰ وات و هوای داغ ۴۵ درجه سانتیگراد- مایکروویو ۵۴۰ وات- مادون قرمز ۶۰۰ وات) بر خواص کیفی سیبزمینی (ضریب انتشار مؤثر رطوبت، بازجذب آب، چروکیدگی، رنگ و انرژی مصرفی) بررسی شدند. نتایج: نتایج نشان داد که بیشترین میزان ضریب انتشار مؤثر رطوبت مربوط به روشهای ترکیبی هوای داغ- مایکروویو و هوای داغ- مایکروویو- مادون قرمز میباشد. همچنین روش هوای داغ- مایکروویو بیشترین میزان بازجذب آب و روش هوای داغ- مایکروویو- مادون قرمز کمترین میزان چروکیدگی را به خود اختصاص داد. از طرفی در بین روشهای مختلف خشک کردن، سیبزمینیهای خشکشده با روش هوای داغ- مادون قرمز رنگ بهتری نسبت به سایر نمونهها داشتند. به طوری که در این روش نسبت به روشهای دیگر میزان تغییرات رنگ (ΔE) و میزان رنگ سبز تا قرمز (a) در پایینترین مقدار و میزان روشنایی (L) و میزان رنگ آبی تا زرد (b) در بالاترین مقدار قرار داشتند. همچنین کمترین انرژی مصرفی در بین روشهای خشک کردن مربوط به مایکروویو ۵۴۰ وات بود. نتیجهگیری نهایی: در نهایت بر اساس ویژگیهای بهینه کیفی به انتخاب نرم افزار Design Expert، مطلوبترین روش خشک کردن سیبزمینی، روش هوای داغ ۴۵ درجه سانتیگراد- مادون قرمز ۶۰۰ وات انتخاب شد. | ||
کلیدواژهها | ||
انرژی مصرفی؛ بازجذب آب؛ چروکیدگی؛ روش هیبرید؛ ضریب انتشار مؤثر رطوب | ||
مراجع | ||
تقی نژاد الف و رسولی شربیانی و، ۱۳۹۶. تأثیر خشک کردن ترکیبی هوای گرم- فروسرخ و مایکروویو بر برخی از ویژگیهای کیفی برنج نیم جوش، فصلنامه فناوریهای نوین غذایی، ۵(۱)، ۳۸-۲۵. جعفریان س، ۱۳۸۰. تأثیر حرارت دهی مقدماتی سیبزمینی و استفاده از برخی هیدروکلوئیدها در کاهش جذب روغن و کیفیت فرنچ فرایز منجمد نیمه سرخ شده، پایاننامه کارشناسی ارشد صنایع غذایی، دانشکده کشاورزی دانشگاه صنعتی اصفهان. حاضر وظیفه الف، نیکبخت ع م و احمدی مقدم پ، ۱۳۹۲. بهینهسازی مصرف انرژی در فرایند خشک کردن سیب با استفاده از امواج مایکروویو، علوم مکانیک در ماشینهای کشاورزی، ۱(۱)، ۲۶-۹. خاکباز حشمتی م و سیفی مقدم الف، ۱۳۹۶. بررسی تکنیک متناوب مایکروویو- هوای گرم بر خواص کیفی و تغذیهای برگههای کیوی خشکشده، نشریه پژوهشهای صنایع غذایی، ۲۷(۱)، ۱۲۶-۱۱۱. ده بوره ر و اسمعیلی م، ۱۳۸۸. تأثیر فرایند خشک کردن نهایی با مایکروویو و هوای داغ بر پارامترهای خشک کردن انگور خشکشده، نشریه پژوهشهای صنایع غذایی ایران، ۵(۲)، ۱۲۲-۱۰۸. صالحی ف، کاشانینژاد م، صادقی ماهونک ع ر و ضیائیفر ا م، ۱۳۹۴. مدلسازی فرایند خشک کردن قارچ دکمهای توسط سامانه مادون قرمز، فصلنامه فناوریهای نوین غذایی، ۸، ۴۷-۳۹. مهریار الف، صادقی م، رضوی س ج و فرقانی الف، ۱۳۹۴. شاخصهای کیفی خرمای رقم استعمران تحت تأثیر روشهای مختلف خشک کردن، نشریه تولید و فراوری محصولات زراعی و باغی، ۵(۱۶)، ۳۱۲-۳۰۵. یعقوبی م، توکلیپور ح، الهامی راد ا ح، ضیاء الحق س ح ر و عسگری ب، ۱۳۹۳. مطالعه برخی از پارامترهای کیفی سیبزمینی در پاسخ به کاربرد روشهای خشک کردن، نشریه نوآوری در علوم و فناوری غذایی، ۶(۲)، ۱۱۰-۱۰۳. یوسفیان س ه، رزداری آ م، سیحون م و کیانی ح، ۱۳۹۵. تعیین شرایط بهینه با روش سطح پاسخ و مقایسه دو روش شبکه عصبی و رگرسیون در خشک کردن سیبزمینی پرتودیده با اشعه گاما، فصلنامه علوم و صنایع غذایی، ۱۳(۵۹)، ۹۶-۸۵. Adak N, Heybeli N and Ertekin C, 2017. Infrared drying of strawberry. Food Chemistry 219: 109-116.
Afzal TM, Abe T and Hikida Y, 1999. Energy and quality aspects during combined FIR-convection drying of barley. Journal Food Engineering 42(4): 177-182.
Aghilinategh N, Rafiee S, Gholikhani A, Hosseinpur S, Omid M, Mohtasebi SS and Maleki N, 2015a. A comparative study of dried apple using hot air, intermittent and continuous microwave: evaluation of kinetic parameters and physicochemical quality attributes. Food Science & Nutrition 3(6): 519–526.
Aghilinategh N, Rafiee S, Hosseinpur S, Omid M and Mohtasebi SS, 2015b. Optimization of intermittent microwave convective drying using response surface methodology. Food Science & Nutrition 3(4): 331-341.
Akpinar K, Bicer Y and Cetinkay F, 2006. Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. Journal of Food Engineering 3: 308-315.
Aktas M, Sevik S, Amini A and Khanlari A, 2016. Analysis of drying of melon in a solar-heat recovery assisted infrared dryer. Solar Energy 137: 500–515.
Alibas I, 2007. Microwave, air and combined microwave– air-drying parameters pumpkin slice. Journal of Food Science and Technology 8: 1445-1451.
Amiri Chayjan R, Tabatabaei Bahrabad SM and Rahimi SF, 2013. Modeling infrared-convective drying of pistachio nuts under fixed and fluidized bed conditions. Journal of Food Processing and Preservation 38(3): 1224-1233.
Brosnan T and Sun DW, 2002. Inspection and grading of agricultural and food products by computer vision systems. Computers and Electronics in Agriculture 36: 193-213.
Chayjan RA, Kaveh M and Khayati S, 2015. Modeling drying characteristics of hawthorn fruit under microwave convective conditions. Journal of Food Processing and Preservation 39(3): 239-253.
Contreras C, Martín-Esparza M, Chiralt A and Martínez-Navarrete N, 2008. Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. Journal of Food Engineering 88: 55-64.
Contreras C, Martın-Esparza ME, Chiralt A and Martınez-Navarrete N, 2012. Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. Journal of Food Engineering 88: 55–64.
Dak M and Pareek N, 2014. Effective moisture diffusivity of pomegranate arils under going microwave– vacuum drying. Journal of Food Engineering 122: 117-121.
Dehghannya J, Gorbani R and Ghanbarzadeh B, 2015a. Effect of ultrasound-assisted osmotic dehydration pretreatment on drying kinetics and effective moisture diffusivity of Mirabelle plum. Journal of Food Processing and Preservation 39(6): 2710-2717.
Dehghannya J, Gorbani R and Ghanbarzadeh B, 2015b. Shrinkage of Mirabelle plum during hot air drying as influenced by ultrasound-assisted osmotic dehydration. International Journal of Food Properties 19(5): 1093-1103.
Dehghannya J, Farshad P and Heshmati MK, 2018. Three-stage hybrid osmotic–intermittent microwave–convective drying of apple at low temperature and short time. Drying Technology doi: 10.1080/07373937.2018.1432642.
Doymaz I, 2012. Infrared drying of sweet potato (Ipomoea batatas L.) slices. Journal of Food Science and Technology 49: 760-766.
Doymaz I, Tugrul N and Pala M, 2006. Drying characteristics of dill and parsley leaves. Journal of Food Engineering 3: 559-565.
Esturk O, 2010. Intermittent and Continuous Microwave-Convective Air-Drying Characteristics of Sage (Salvia officinalis) Leaves. Food and Bioprocess Technology 5(5): 1664-1673.
Feng H and Tang J, 1998. Microwave finish drying of diced apples in a spouted bed. Journal of Food Science and Technology 63: 679-683.
Hamanaka D, Dokan S, Yasunaga E, Kuroki S, Uchino T and , 2000. The sterilization effects of infrared ray on the agricultural products spoilage microorganisms. Pp. 9-12. In 2000 ASAE Annual International Meeting, Milwaukee, Wisconsin, USA.
Hatamipour MS and Mowla D, 2002. Shrinkage of carrots during drying in an inert medium fluidized bed. Journal of Food Engineering 55: 247–252.
Hebbar H and Rastogi NK, 2001. Mass transfer during infrared drying of cashew kernel. Journal of Food Engineering 47(1): 1–5.
Kassem AS, Shokr AZ, El-Mahdy AR, Aboukarima AM and Hamed EY, 2011. Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying. Journal of the Saudi Society of Agricultural Sciences 10(1): 33-40.
Khir R, Pan Zh, Salim A, Hartsough BR and Mohamed S, 2011. Moisture diffusivity of rough rice under infrared radiation drying. LWT- Food Science and Technology 44: 1126-1132.
Khraisheh MAM, McMinn WAM and Magee TRA, 2004. Quality and structural changes in starchy foods during microwave and convective drying. Food Research International 37(5): 497-503.
Krishnamurthy K, Khurana HK, Jun S, Irudayaraj J and Demirci A, 2008. Infrared heating in food processing: an overview. Comprehensive Reviews Food Science and Food Safety 7(1): 2-13.
Markowski M, Bondaruk J and Blaszczak W, 2009. Rehydration behavior of vacuum- microwave-dried potato cubes. Drying Technology 27: 296-305.
Maskan M, 2000. Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering 48: 177-182.
Mertens B and Knorr D, 1992. Developments of nonthermal processes for food preservation. Food Technology 46(5): 124-133.
Mierzwa D and Pawłowski A, 2017. Convective drying of potatoes assisted by microwave and infrared radiation–process kinetics and quality aspects. Journal of Food and Nutrition Research 56(4): 351-361.
Nimmanpipug N, Therdthai N and Dhamvithee P, 2013. Characterisation of osmotically dehydrated papaya with further hot air drying and microwave vacuum drying. Food Science and Technology 48(6): 1193–1200.
Orikasa T, Wu L, Shiina T and Tagawa A, 2008. Drying characteristics of kiwifruit during hot air drying. Journal of Food Engineering 85(2): 303-308.
Ozbek B and Dadali G, 2007. Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. Journal of Food Engineering 4: 541-549.
Ozdemir MB, Aktas M, Sevik S and Khanlari A, 2017. Modeling of a convective-infrared kiwifruit drying process. International Journal of Hydrogen Energy 42(28): 18005-18013.
Pan Z, Shih C, McHugh TH and Hirschberg E, 2008. Study of banana dehydration using sequential infrared radiation heating and freeze-drying. LWT-Food Science and Technology 41: 1944-1951.
Pavon-Melendez G, Hernandez JA, Salgado MA and Garcıa MA, 2002. Dimensionless analysis of the simultaneous heat and mass transfer in food drying. Journal of Food Engineering 51(4): 347-353.
Pedreschi F, 2012. Frying of potatoes: physical, chemical, and microstructural changes. Drying Technology 30: 707-725.
Praveen Kumar DG, Hebbar HU and Ramesh MN, 2006. Suitability of thin layer models for infrared–hot air-drying of onion slices. LWT-Food Science and Technology 39:(6), 700–705.
Sabarez HT, 2015. Modelling of drying processes for food materials. Pp. 95–123 In: Bakalis S, Knoerzer K and Fryer P. (Eds.), Modelling Food Processing Operations. Woodhead Publishing, An Imprint of Elsevier, Elsevier B.V.
Sharma G and Prasad S, 2004. Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. Journal of Food Engineering 65: 609-617.
Sheridan P and Shilton N, 1999. Application of infra-red radiation to cooking of meat products. Journal of Food Engineering 41: 203-208.
Simal S, Femenia A, Carcel JA and Rosello C, 2005. Mathematical modelling of the drying curves of kiwifruits: influence of the ripening stage. Journal of the Science of Food and Agriculture 85: 425-432.
Wang Z, Sun J, Chen F, Liao X and Hu X, 2007. Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. Journal of Food Engineering 80(2): 536-544.
Wang R, Zhang M and Mujumdar AS, 2010. Effect of osmotic dehydration on microwave freeze-drying characteristics and quality of potato chips. Drying Technology 28(6): 798-806.
Wang R, Zhang M and Mujumdar AS, 2010. Effect of vacuum and microwave freeze drying on microstructure and quality of potato slices. Journal of Food Engineering 101: 131-139.
Wray D and Ramaswamy HS, 2015. Novel concepts in microwave drying of foods. Drying Technology 33(7): 769-783.
Yadollahinia A and Jahangiri M, 2009. Shrinkage of potato slice during drying. Journal of Food Engineering 94: 52-58.
Yam KL and Papadakis SE, 2004. A simple digital imaging method for measuring and analyzing color of food surfaces. Journal of Food Engineering 61: 137-142.
Zehlender GW, Powerlson ML, Jonsson RK and Roman KV, 1994. Advanced in potato pest biology and management. Minnestoa: APS Press.
Zhao D, An K, Ding S, Liu L, Xu Z and Wang Z, 2014. Two-Stage Intermittent Microwave Coupled with Hot-Air Drying of Carrot Slices: Drying Kinetics and Physical Quality. Food and Bioprocess Technology 7: 2308-2318. | ||
آمار تعداد مشاهده مقاله: 782 تعداد دریافت فایل اصل مقاله: 506 |