تعداد نشریات | 43 |
تعداد شمارهها | 1,268 |
تعداد مقالات | 15,628 |
تعداد مشاهده مقاله | 51,679,492 |
تعداد دریافت فایل اصل مقاله | 14,564,916 |
بررسی ویژگیهای فیزیکی شیمیایی نانوکامپوزیتهای امولسیونی بر پایه کربوکسیمتیل سلولز- نانو ذرات نقره | ||
پژوهش های صنایع غذایی | ||
دوره 30، شماره 2، شهریور 1399، صفحه 87-99 اصل مقاله (1.3 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
خالد عرب1؛ بابک قنبرزاده* 1؛ شفق کریمی* 2 | ||
1گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز | ||
2گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد تبریز | ||
چکیده | ||
زمینه مطالعاتی: در این تحقیق فیلمهای امولسیونی بر پایه کربوکسیمتیلسلولز (CMC) حاوی غلظتهای مختلف نانو ذرات نقره (٥/٠، ١، ٢% بر پایه CMC) به روش قالبریزی تهیه شدند. هدف: یکی از مهمترین اهداف این پژوهش استفاده همزمان از نانو ذرات نقره و اسید اولئیک جهت امولسیون کردن فیلمها و کاهش قابل توجه قطبیت آنها میباشد. روش کار: به منظور بررسی نحوة پراکندهگی نانو ذرات در ماتریکس بیوپلیمر از آزمون پراش پرتو ایکس (XRD) استفاده شد. خواص حرارتی فیلم با استفاده از دستگاه گرماسنجی پویشی افتراقی (DSC) انجام شد. میزان عبور امواج مرئی و فرابنفش، نفوذپذیری نسبت به بخار آب و خواص سطحی فیلم ها نیز مورد بررسی قرار گرفت. نتایج: نتایج نشان داد نانو ذرات در بالاترین غلظت (۲%) خواص کریستالی خود را نسبتاً حفظ کردند. دمای انتقال شیشهای (Tg)، در فیلمهای شاهد C° ٦٥/٨٦ بود که با افزودن ۲% نانو نقره به C° ٦١/٨٣ کاهش پیدا کرد. همچنین میزان عبور امواج فرابنفش و مرئی (UV-VIS) در فیلمهای حاوی ۲% نانو نقره کاهش معنیداری (05/0P˂) پیدا نمود. به طوریکه تقریباً ۹۰% از امواج فرابنفش و ۷۷% از امواج مرئی را جذب نمودند. از طرفی میزان نفوذ پذیری نسبت به بخار آب (WVP) از g/m.h.Pa ٨- ١٠×١٥/٧ در فیلمهای شاهد، به g/m.h.Pa ٨- ١٠×٦٢/٦ در فیلمهای حاوی ۲% نانو نقره کاهش پیدا کرد. میزان زبری، برآمدگی و فرورفتگی فیلمهای دارای ۲% نقره، نسبت به فیلم خالص افزایش و یکنواختی سطح فیلمها کاهش پیدا کرد. نتیجهگیری نهایی: استفاده از غلظت ۲% نانو نقره در اکثر آزمونهای انجام گرفته، نتایج به مراتب بهتری نشان داد. | ||
کلیدواژهها | ||
نانو نقره؛ فیلم کربوکسی متیل سلولز؛ نانوکامپوزیت های امولسیونی | ||
مراجع | ||
عرب خ، قنبرزاده ب، قیاسی فر ش و کریمی ش، 1394. نانوکامپوزیت های امولسیونی بر کربوکسی متیل سلولز-اسید اولئیک حاوی نانو ذرات دی اکسید تیتانیم: بررسی ریزساختارها و ویژگیهای فیزیکی. نشریه پژوهش های صنایع غذایی 25(4)، 561-551. ASTM,1995. Designation E 96-95: Standard test methods for water vapor transmission of materials. in annual book of ASTM standards, philadelphia, PA: American Society for Testing and Materials.
Bahrami A, Rezaei M.R, Sowti Khiabani M, Ghanbarzadeh B and Salehi R, 2018. Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl methylcellulose/beeswax edible films reinforced with silver nanoparticles. International Journal of Biological Macromolecules 1103-1112.
Bordes P, Pollet E and Avérous L, 2009. Nano-biocomposites: biodegradable polyester/nanoclay systems. Progress in Polymer Science 20: 125–155.
De Azerdo H.M.C, Mattoso L.H.C, Wood D, Williams T.G, Avena-Bustillos R.J and Mughch T.H, 2009. Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. Journal of Food Science 74(5): 31-35.
Ebrahimzadeh S, Ghanbarzadeh B and Hamishehkar H, 2015. Physical properties of carboxymethyl cellulose based nano-biocomposites with Graphene nano-platelets. International Journal of Biological Macromolecules 84: 16-23.
Gautam A and Ram S, 2010. Preparation and thermomechanical properties of Ag-PVA nanocomposite films. Materials Chemistry and Physics 119: 266–271.
Ghanbarzadeh B and Almasi H, 2011. Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules 48: 44-49.
Han JH, 2000. Antimicrobial food packaging. Food Technology 54(3): 56–65.
Imran H, Revol-Junelles AM, Martyn A, Tehrany EA, Jacquot M, Linder M and Desobry S, 2010. Active food packaging evolution: transformation from micro to nanotechnology. Critical Reviews in Food Science and Nutrition 50: 799–821.
Kumar R and Munstedt H, 2005. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26: 2081-2088.
Li S.H, Jia N, Ma M and Sun R, 2011. Cellulose-silver nanocomposites: microwave assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydrate Polymers 86: 441-447.
Mbbele Z.H, Salemane M.G, van Sittert C.G.C.E, Nedeljkovic J.M, Djokovic V and Luyt A.S, 2003. Fabrication and characterization of silver–polyvinyl alcohol nanocomposites. Chemistry of Materials 15(26): 5019–5024.
Maity D, Mollick M, Mondal D and Bhowmick B, 2012. Synthesis of methylcellulose–silver nanocomposite and investigation of mechanical and antimicrobial properties. Carbohydrate Polymers 90: 1818–1825.
Moura M, Mattoso L and Zucolotto V, 2012. Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. Journal of Food Engineering 109: 520-524.
Rachtanapun P, Luangkamin S, Tanprasert K and Suriyatem R, 2012. Carboxymethyl cellulose film from durian rind. Food Science and Technology 48: 52-58.
Rhim J.W, 2007. Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition 47: 411–33.
Rhim J.W, Park H and Ha C, 2013. Bio-nanocomposites for food packaging applications. Progress in Polymer Science. Food Hydrocolloids 33: 327-335.
Ricardo J.B, Susana C.M, Carmen S.R, Sadocco P, Causio J, Neto C.P and Trindade T, 2012. Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydrate Research 348: 77-83.
Ricardo J.B, Almeida A, Susana C.M, Carmen S.R, Armando J.D, Neto C.P and Trindade T, 2013. Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids and Surfaces B: Biointerfaces 103: 1143-148.
Shankar sh, Wang L.F and Rhim J.W, 2016. Preparations and characterization of alginate/silver composite films: Effect of types of silver particles. Carbohydrate Polymers 146: 208-216.
Shankar S, Teng X and Rhim J.W, 2014. Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohydrate Polymers 114: 484-492.
Shankar sh, Tanomrod N, Rawdkuen R and Rhim J.W, 2016. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. International Journal of Biological Macromolecules 92: 842–849
Shankar sh and Rhim J.W, 2017. Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocolloids 71: 76-84.
Shankar sh and Wang L.F and Rhim J.W, 2017. Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydrate Polymers 169: 264-271.
Sinha Ray S and Bousmina M, 2005. Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Progress in Material Science 50: 962-1079.
Sorrentino A, Gorrasi G and Vittoria V, 2007. Potential perspectives of bionanocomposites for food packaging applications. Journal of Trends in Food Science & Technology 18: 84-95.
Sothornvit R, Rhim J.W and Hong, S.I. 2009. Effect of nano-clay type on the physicale and antimicrobial properties of whey protein isolate/clay composite film. Journal of Food Engineering 91, 468-473.
Weber C.J, Haugaard V, Festersen R and Bertelsen G, 2002. Production and application of bio based packaging materials for the food industry. Food Additives & Contaminants 19: 172–7. | ||
آمار تعداد مشاهده مقاله: 435 تعداد دریافت فایل اصل مقاله: 287 |