تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,487,029 |
تعداد دریافت فایل اصل مقاله | 15,213,985 |
مقایسه فنی و اقتصادی اثر پیش سرمایش جذبی بر واحدهای مایع سازی گاز طبیعی به منظور تامین سوخت نیروگاه شهید رجائی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 19، دوره 51، شماره 3 - شماره پیاپی 96، آبان 1400، صفحه 165-174 اصل مقاله (1.01 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2021.11062 | ||
نویسندگان | ||
امیرفرشاد کلوانی1؛ مصطفی مافی* 2؛ منصور خانکی3 | ||
1کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه ببن المللی امام خمینی(ره)، قزوین، ایران | ||
2استادیار، گروه مهندسی مکانیک، دانشگاه ببن المللی امام خمینی(ره)، قزوین، ایران | ||
3دانشیار، گروه مهندسی مکانیک، دانشگاه ببن المللی امام خمینی(ره)، قزوین، ایران | ||
چکیده | ||
ایران از گاز به عنوان حامل اصلی انرژی در مصارف مختلفی بهره میبرد. برقراری واحدهای مایعسازی قله سایی با توجه به کاهش حجم گاز طبیعی، مطلوب-ترین شیوه برای ذخیرهسازی گاز مازاد در فصول گرم سال و استفاده از آن در ایام سرد است. با توجه به هزینههای کارکردی و نگهداری بالای چرخههای مایعسازی، ابداع راهکارهایی با هدف کاهش مصرف انرژی و بهبود اقتصاد این واحدها، حائز اهمیت است. در این پژوهش ضمن انتخاب نیروگاه چرخه ترکیبی شهید رجایی قزوین ، چرخه مایعسازی گاز طبیعی با مبرد چندجزئی و پیشسرمایش تبرید جذبی با هدف تامین سوخت مورد نیاز کل واحدهای این نیروگاه برای 60 روز کارکرد، شبیهسازی گردید و مورد تحلیل فنی و اقتصادی قرار گرفت و به لحاظ عملکردی با چرخه مبرد چندجزئی یک طبقهای رایج (بدون پیش سردکن) مورد مقایسه قرار گرفت. نتایج نشان میدهد که نسبت به چرخه مبرد چندجزئی یک طبقهای بدون پیشسردکن، میزان توان مصرفی ویژه 43 %، قیمت تمام شده خرید تجهیزات چرخه مایع سازی 15 % و میزان دبی مبرد چندجزئی 69 % کاهش و عدد شایستگی به میزان 36/28 % افزایش یافته است. | ||
کلیدواژهها | ||
گاز طبیعی مایع؛ پیش سرمایش جذبی؛ بخش نیروگاهی؛ تحلیل فنی و اقتصادی؛ عدد شایستگی | ||
مراجع | ||
[1] https://nigc.ir. [3] Mokhatab S., Mak J. Y., Valappil J. V. and Wood D. A., Handbook of liquefied natural gas. Gulf Professional Publishing, 2013. [4]Venkatarathnam G. and Timmerhaus K. D. , Cryogenic mixed refrigerant processes. Springer, New York, 2008. [5] Moein P., Sarmad M., Ebrahimi H., Zare M., Pakseresht S., & Vakili S. Z., APCI-LNG single mixed refrigerant process for natural gas liquefaction cycle: analysis and optimization. Journal of Natural Gas Science and Engineering, Vol.26, pp.470-479, 2015. [6] Morosuk T., Tesch S., Hiemann A., Tsatsaronis G. & Omar N. B., Evaluation of the PRICO liquefaction process using exergy-based methods. Journal of Natural Gas Science and Engineering, Vol.27, pp.23-31, 2015. [7] Cao L., Liu J., and Xu X., Robustness analysis of the mixed refrigerant composition employed in the single mixed refrigerant (SMR) liquefied natural gas (LNG) process. Applied Thermal Engineering, Vol.93, pp.1155-1163, 2016. [8] He T. and Ju Y., Dynamic simulation of mixed refrigerant process for small-scale LNG plant in skid mount packages. Energy, Vol.97, pp.350-358, 2016. [9] Ghorbani, B., Hamedi, M. H., Amidpour, M., and Shirmohammadi, R., Implementing absorption refrigeration cycle in lieu of DMR and C3MR cycles in the integrated NGL, LNG and NRU unit. International Journal of Refrigeration, Vol.77, pp.20-38, 2017. [10] Nguyen, T. V., Rothuizen, E. D., Markussen, W. B., and Elmegaard, B. , Thermodynamic comparison of three small-scale gas liquefaction systems. Applied Thermal Engineering, Vol.128, pp.712-724, 2018. [11] Mehrpooya M., Omidi M., and Vatani A., Novel mixed fluid cascade natural gas liquefaction process configuration using absorption refrigeration system. Applied Thermal Engineering, Vol.98, pp.591-604, 2016. [12] Tirandazi B., Mehrpooya M., Vatani A., & Moosavian S. A. Exergy analysis of C2+ recovery plants refrigeration cycles. Chemical Engineering Research and Design, Vol.89, No.6, pp.676-689, 2011. [13] Mehrpooya, M., and Ansarinasab, H., Exergoeconomic evaluation of single mixed refrigerant natural gas liquefaction processes. Energy conversion and management, Vol.99, pp.400-413, 2015. [14] Sayyaadi H., and Babaelahi M., Thermoeconomic optimization of a cryogenic refrigeration cycle for re-liquefaction of the LNG boil-off gas. International Journal of Refrigeration, Vol.33, No.6, pp.1197-1207, 2010. [15] Ansarinasab H., & Mehrpooya M., Advanced exergoeconomic analysis of a novel process for production of LNG by using a single effect absorption refrigeration cycle. Applied Thermal Engineering, Vol.114, pp.719-732, 2017. [16] Ghorbani B., Mehrpooya M., Shirmohammadi R., and Hamedi M. H., A comprehensive approach toward utilizing mixed refrigerant and absorption refrigeration systems in an integrated cryogenic refrigeration process. Journal of cleaner production, Vol.179, pp.495-514, 2018. [17] Khodaee M., Ashrafizadeh A., Mafi M. , Optimization of propane and butane gas liquefaction cycle considering compressor technical limitations using genetic algorithm. Modares Mechanical Engineering, Vol.17, No.2, pp. 315-324, 2017. (In Persian) [18] Ghorbani B., Hamedi M. H., Amidpour M. and Mehrpooya M., Cascade refrigeration systems in integrated cryogenic natural gas process (natural gas liquids (NGL), liquefied natural gas (LNG) and nitrogen rejection unit (NRU)). Energy, Vol.115, pp.88-106, 2016. [19] Karamloo B., Khanaki M., Mafi M., Sadatsakkak S. A, Effect of feed conditions on the performance of double stage mixed refrigerant LNG system. Modares Mechanical Engineering, Vol.16, No.10, pp. 103-114, 2016. (In Persian) [20] Moradi A., Mafi M., Khanaki M., Sensitivity analysis of peak-shaving natural gas liquefaction cycles to environmental and operational parameters. Modares Mechanical Engineering, Vol.15, No.6, pp.287-298, 2015. (In Persian) [21] Parpinchi M.K, Sadeghi A., Khanaki M., Sadatsakkak S. A., Optimization and thermodynamic analysis of the dual mixed refrigerant process of natural gas liquefaction. Amirkabir Mechanical Engineering,(Online Available) , 2018. (In Persian). [22] Karamloo B., Sadatsakkak S. A., Mafi M.,.Manafi H., Effect of refrigerant component leakage on the performance of double stage mixed refrigerant LNG process. Journal of Mechanical Engineering Tabriz University, Vol.47, No.4, pp.267-276, 2016. (In Persian) [23] Aslambakhsh A. H., Moosavian M.A., Amidpour M., Hosseini M. and AmirAfshar S., Global cost optimization of a mini-scale liquefied natural gas plant. Energy, Vol.148, pp.1191-1200, 2018. [24] Lin W., Xiong X. and Gu A., Optimization and thermodynamic analysis of a cascade PLNG (pressurized liquefied natural gas) process with CO2 cryogenic removal. Energy, Vol.161, pp.870-877, 2018. [25] Wang Q., Song Q., Zhang J., Liu R. Zhang S. and Chen G., Performance analyses on four configurations of natural gas liquefaction process operating with mixed refrigerants and a rectifying column. Cryogenics, Vol.97, pp.13-21, 2019. [26] Watson H. A., Vikse M., Gundersen T., and Barton, P. I., Optimization of single mixed-refrigerant natural gas liquefaction processes described by nondifferentiable models. Energy, Vol.150, pp.860-876, 2018. [27] Wang Q., Song Q., Zhang J., Liu R., Zhang S. and Chen G., Experimental studies on a natural gas liquefaction process operating with mixed refrigerants and a rectifying column. Cryogenics, Vol.99, pp.7-17,2019. [28] http://rajaei.tpph.ir/SitePages/Tamas/CantactForUs.aspx [29] Human Resources and Research Office of Information Technology and Statistics, Detailed statistics of Iranian power industry especially for strategic management, Tavanir Company, 2016. (In Persian) [30] Mehrpooya, M., Hosseini, M., and Vatani A., Novel LNG-based integrated process configuration alternatives for coproduction of LNG and NGL, Industrial & Engineering Chemistry Research Vol.53, pp.17705-17721, 2014. | ||
آمار تعداد مشاهده مقاله: 416 تعداد دریافت فایل اصل مقاله: 335 |