تعداد نشریات | 43 |
تعداد شمارهها | 1,263 |
تعداد مقالات | 15,571 |
تعداد مشاهده مقاله | 51,594,280 |
تعداد دریافت فایل اصل مقاله | 14,526,804 |
آنالیز میرایی فیلم نازک سیال در تشدیدکننده های محرک-شانهای مدور با درنظر گرفتن شرایط مرزی لغزش | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 20، دوره 51، شماره 3 - شماره پیاپی 96، آبان 1400، صفحه 175-182 اصل مقاله (824.99 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2021.11047 | ||
نویسندگان | ||
مینا قنبری* 1؛ قادر رضازاده2 | ||
1استادیار، گروه مهندسی مکانیک، دانشکده فنی مهندسی خوی، دانشگاه ارومیه، ارومیه، ایران | ||
2استاد، گروه مهندسی مکانیک، دانشگاه ارومیه، ارومیه، ایران | ||
چکیده | ||
در این مقاله میرایی فیلم نازک سیال در ریزتشدیدکننده های محرک-شانهای مدور با درنظر گرفتن شرایط مرزی لغزش مورد بررسی قرار میگیرد. مدل پیشنهادی، شامل یک دندانه متحرک صلب به شکل میکرو صفحه یک سرگیردار میباشد که توسط دندانه های ثابت در بالا و پایین آن احاطه شده است. میکرو فاصله بین دندانه متحرک و دندانه های ثابت با سیال هوا پر شده است. معادلات حاکم بر ارتعاش طولی میکرو دندانه و همین طور حاکم بر میدان سیال با درنظر گرفتن فرضیات مناسب استخراج و پس از بیبعد سازی با بکارگیری روش عددی گلرکین جداسازی و بصورت عددی حل میشوند. هدف از حل معادلات، بدست آوردن فرکانس های میرایی و در نهایت ضریب میرایی معادل سیستم میباشد. سپس اثرات پارامترهای هندسی تشدیدکننده از جمله طول، ضخامت دندانه و همین طور اندازه شکاف سیال روی پاسخ سیستم مورد بررسی قرار میگیرد. همین طور بررسی اثرات لغزش سیال در سطوح مرزی نشان میدهد که لغزش سیال در نقاط مرزی باعث افزایش آزادی و دامنه حرکت مولکولهای سیال در مرز سیال-جامد شده و به تبع آن فاکتور کیفیت سیستم افزایش مییابد. | ||
کلیدواژهها | ||
سیستم های میکروالکترومکانیکی؛ میرایی فیلم نازک سیال؛ رزوناتورهای محرک- شانه ای؛ شرط مرزی لغزش؛ روش گلرکین؛ فاکتور کیفیت | ||
مراجع | ||
[1] Rezazadeh G., Ghanbari M., On the modeling of a piezoelectrically actuated microsensor for simultaneous measurement of fluids viscosity and density. Measurement Vol. 43, No.10, pp.1516-1524, 2010 [2] Ghanbari M., Hossainpour S., Rezazadeh G., On the modeling of a piezoelectrically actuated microsensor for simultaneous measurement of microscale fluid physical properties. Applied Physics A, Vol. 121, No. 2. pp. 651-663, 2015 [3] Heinisch M., Voglhuber-Brunnmaier T., Reichel E. K., Dufour I., Jakoby B., Application of resonant tuning forks with circular and rectangular cross sections for precise mass density and viscosity measurements. Sensors and Actuators A, Vol. 226, pp. 163-174, 2015 [4] Heinisch M., Reichel E. K., Dufour I., Jakoby B., Modeling and experimental investigation of resonant viscosity and mass density sensors considering their cross sensitivity to temperature. Procedia engineering, Vol. 87, pp. 472-475, 2014 [5] Nguyen, C.T.-C., Vibrating RF MEMS for next generation wireless applications, In Proceedings of the IEEE Custom Integrated Circuits Conference, Orlando,FL, Piscataway, 2004 [6] Sen P., Kim C. J, A liquid-solid direct contact low-loss RF micro switch. Journal of microelectromechanical systems, Vol.18, No.5, pp.990-997, 2009 [7] Samaali H., Najar F., Choura S., Nayfeh A. H, A double microbeam MEMS ohmic switch for RF-applications with low actuation voltage. Nonlinear Dynamics, Vol. 63, No. 4, pp. 719-734, 2011 [8] Iannacci J., RF-MEMS for 5G applications: a reconfigurable 8-bit power attenuator working up to 110 GHz. Part1: design concept, technology and working principles. Microsystem technologies, doi:10.1007/s00542-019-04591-0, 2019 [9] Revathi S., Padmanabhan R., Design and development of piezoelectric composite-based micropump. Journal of microelectromechanical systems, Vol. 27, No.6, pp. 1105-1113, 2018 [10] Revathi S., Padmapriya N., Padmanabhan R., A design analysis of piezoelectric- polymer composite-based valveless micropump. International Journal of Modelling and Simulation, Vol. 39, No. 4): 1-15, 2019 [11] Bormashenko E., Balter R., Aurbach D., Micropump based on liquid marbles. Applied Physics Letters, Vol. 97:091908, 2010 [12] Ghanbari M., Rezazadeh G., A liquid-state high sensitive accelerometer based on a micro-scale liquid marble. Microsystem Technologies. doi:10.1007/s00542-019-04528-7, 2019 [13] Cleland A. N., Roukes M. L, A nanometre-scale mechanical electrometer. Nature, Vol. 392:160–162, 1998 [14] Burns D. W., Zook J. D., Horning R. D et al., Sealed-cavity resonant microbeam pressure sensor. Sensors and Actuators A, Vol. 48, No. 3, pp. 179–186, 1995 [15] Yasumura K.Y., Stowe T. D., Chow E. M et al., Quality factor in micro- and submicron-thick cantilevers. Journal of Microelectromechanical systems, Vol. 9, No.1, pp.117–125 [16] Burns D. W., Horning R. D., Herb W. R et al., Sealed-cavity resonant microbeam accelerometer. Sensors and Actuators A, Vol. 53, No.1-3, pp.:249–255, 1996 [17] Azizi S., Rezazadeh G., Ghazavi M. R., Esmaeilzadeh Khadem S., Stabilizing the pull-in instability of an electrostatically actuated micro-beam using piezoelectric actuation. Applied Mathematical Modelling, Vol. 35, No. 10, pp. 4796-4815, 2011 [18] Azizi S., Ghazavi M. R., Esmaeilzadeh Khadem S., Rezazadeh G., Cetinkaya C, Application of piezoelectric actu ation to regularize the chaotic response of an electrostatically actuated micro-beam. Nonlinear Dynamics, Vol. 73, No.1-2, pp. 853-867, 2013 [19] Newell W. E., Miniaturization of tuning forks. Science, Vol. 161, pp.1320–1326, 1968 [20] Nayfeh H., Younis M. I, A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. Journal of Micromechanics and microengineering, Vol. 14, No. 2, pp. 170-181, 2004 [21] Alcheikh N., Kosuru L., Jaber N., Bellaredj, M., Younis M., Influence of squeeze film damping on the higher-order modes of clamped-clamped microbeams. Journal of Micromechanics and Microengineering, Vol. 26, No. 6, pp. 065014, 2016 [22] Galisultanov A., Moal P. L., Bourbon G., Walter V, Squeeze film damping and stiffening in circular CMUT with air-filled cavity: Influence of the lateral venting boundary conditions and the bias voltage. Sensors and Actuators A, Vol. 266, pp.15-23, 2017 [23] Feng C. H., Zhao Y. P., Liu D. Q., Squeeze-film effects in MEMS devices with perforated plates for small amplitude vibration. Microsystem Technologies,Vol. 13:625, 2006 [24] Ghanbari M., Hossainpour S., Rezazadeh G., Study of Squeeze film damping in a micro-beam resonator based on micropolar theory. Latin American Journal of Solids and Structures, Vol. 12, No.1, pp.77-91, 2014 [25] Younis M. I., Nayfeh A. H., Simulation of squeeze-film damping of microplates actuated by large electrostatic load. Journal ofComputational and Nonlinear Dynamics. Vol. 2, No. 3, pp 101-112, 2007 [26] Chatrejee S., Pohit G., A large deflection model for the pull-in analysis of electrostatically actuated micro cantilever beams. Journal of Sound and Vibration, Vol 322, pp. 969-986, 2009 [27] Chatrejee S., Pohit G., Squeeze- film characteristics of cantilever micro-resonators for higher modes of flexural vibration. International Journal of Engineering Science and Technology, Vol. 2, No. 4, pp.187-199, 2010 [28] Wang W., Jia J., Li J., Slide film damping in microelectromechanical system devices. Journal of Nanoengineering and Nanosystems, Vol. 227, No.4, pp. 162–170, 2013 [29] Cho Y. H., Pisano A. P., Howe R. T, Viscous damping model for laterally oscillating microstructures. Journal of Microelectromechanical Systems, Vol. 3, No. 2, pp. 81–87, 1994 [30] Azma S., Rezazadeh G., Shabani R., Alizadeh-Haghighi E, Viscos fluid damping in a laterally oscillating finger of a comb-drive micro-resonator based on micro-polar fluid theory, Acta Mechanica Sinica, Vol. 32, No.3, pp.397-405, 2015 [31] Du Y., Zhou G., Cheo K. L., Zhang Q., Feng H., Chau F. S., A 2-DOF circular-Resonator-Driven in-plane vibratory grating laser scanner. Journal of Microelectromechanical System,Vol. 18, No.4, pp. 892-904, 2009 [32] Blech J. J, On isothermal squeeze films. Journal of Lubrication Technology, Vol. 105, No. 4, pp. 615–620, 1983 [33] Veijola T., Compact Models for Squeezed-Film Dampers with Inertial and Rarefied Gas Effects, Journal of Micromechanics and Microengineering, Vol. 14, No.7, pp.1109–1118, 2004 [34] Ye W., Wang X., Hemmert W., Freeman D., and White J., Air damping in lateral oscillating micro-resonators: a numerical and experimental Study. Journal of Microelectro mechamical Systems, Vol. 12, No.5, pp. 557-566, 2003 [35] Pengwang E, Rabenorosoa K, Rakotondrabe M, Andreff N., Scanning micromirror platform based on MEMS technology for medical application, Vol.7, No.24 : 10.3390/mi7020024, 2016 [36] Ghanbari M., Hossainpour S., Rezazadeh G, On the modeling of a piezoelectrically actuated microsensor for measurement of micro-scale fluid physical properties, Applied physics A, Vol. 121, pp.651-663, 2015 | ||
آمار تعداد مشاهده مقاله: 242 تعداد دریافت فایل اصل مقاله: 235 |