تعداد نشریات | 44 |
تعداد شمارهها | 1,311 |
تعداد مقالات | 16,095 |
تعداد مشاهده مقاله | 52,686,868 |
تعداد دریافت فایل اصل مقاله | 15,351,184 |
اجماع گروهی مبتنیبر رهبر سیستمهای چندعاملی مرتبهکسری زمانگسسته باتاخیرزمانی | ||
مجله مهندسی برق دانشگاه تبریز | ||
شناسنامه علمی شماره، دوره 50، شماره 1 - شماره پیاپی 91، خرداد 1399، صفحه 253-267 اصل مقاله (1.29 M) | ||
نویسندگان | ||
عرفان شهامت خواه؛ سید محمد طباطبایی* | ||
دانشکده مهندسی برق و کامپیوتر - دانشگاه آزاد اسلامی واحد خمینی شهر | ||
چکیده | ||
در این مقاله، اجماع گروهی مبتنیبر رهبر برای سیستمهای چندعاملی مرتبهکسری زمانگسسته با تاخیر زمانی، بررسیشدهاست. در ابتدا، دو گروه در نظر گرفته شدهاند. سپس، مساله، بهتعداد دلخواهی گروه نیز تعمیمیافتهاست. عاملها، انتگرالگیرهای مرتبهکسری زمانگسسته با تاخیر در ورودی، فرض شدهاند. ارتباط بین عاملها با یک شبکه ارتباطی جهتدار با ساختار ثابت، توصیفشدهاست. مساله اجماع گروهی برای عاملهای ذکرشده، به تحلیل پایداری مجانبی برای یک سیستم مرتبهکسری زمانگسسته با تاخیر ، منجرشدهاست. با توجه به این ایده، شرط لازم و کافی برای دستیابی به اجماع گروهی مبتنیبر رهبر، بر حسب بهرههای کنترلی عاملها، استخراجشدهاست. همچنین مقدار بهینه بهرههای کنترلی، برای کمینهکردن یک شاخص عملکرد خاص، محاسبهشدهاست. شبیهسازیهای عددی، کارآیی روش پیشنهادی را نشان میدهند. | ||
کلیدواژهها | ||
سیستمهای چندعاملی؛ سیستمهای مرتبهکسری زمانگسسته؛ اجماع مبتنیبر رهبر؛ اجماع گروهی؛ انتگرالگیر مرتبهکسری | ||
مراجع | ||
[1] F. L. Lewis, H. Zhang, K. Hengster-Movric and A. Das, Cooperative Control of Multi-agent Systems: Optimal and Adaptive Design Approaches, Springer-Verlag, London, 2014. [2] C. G. Cassandras and W. Li, “Sensor networks and cooperative control,” European Journal of Control, vol. 11, no. 4-5, pp. 436-463, 2005. [3] Z. Qu, J. Wang and R. A. Hull, “Cooperative control of dynamical systems with application to autonomous vehicles,” IEEE Transactions on Automatic Control, vol. 53, no. 4, pp. 894 – 911, 2008. [4] J. Ghommam, M. S. Mahmoud and M. Saad, “Robust cooperative control for a group of mobile robots with quantized information exchange,” Journal of the Franklin Institute, vol. 350, no. 8, pp. 2291–2321, 2013. [5] W. Ni and D. Cheng, “Leader-following consensus of multi-agent systems under fixed and switching topologies,” Systems & Control Letters, vol. 59, no. 3-4, pp.209–217, 2010. [6] K. D. Do, “Formation control of multiple elliptical agents with limited sensing ranges,” Automatica, vol. 48, no. 7, pp. 1330-1338, 2012. [7] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401 – 420, 2006. [8] H. Y. Yang, X. L. Zhu and S. Y. Zhang, “Consensus of second-order delayed multi-agent systems with leader-following,” European Journal of Control, vol. 16, no. 2, pp. 188-199, 2010. [9] W. Zhu and D. Cheng, “Leader-following consensus of second-order agents with multiple time-varying delays,” Automatica, vol. 46, no. 12, pp. 1994–1999, 2010. [10] S. Djaidja and Q. Wu, “Leader-following consensus of single-integrator multi-agent systems under noisy and delayed communication,” International Journal of Control, Automation and Systems, vol. 14, no. 2, pp. 357-366, 2016. [11] D. Xie and S. Wang, “Consensus of second-order discrete-time multi-agent systems with fixed topology,” Journal of Mathematical Analysis and Applications, vol. 387, no. 1, pp. 8–16, 2012. [12] H. Li, X. Liao and G. Chen, “Leader-following finite-time consensus in second-order multi-agent networks with nonlinear dynamics,” International. Journal of Control, Automation and Systems, vol. 11, no. 2, pp. 422–426, 2013. [13] Y. Zhang and Y. Yang, “Finite-time consensus of second-order leader-following multi-agent systems without velocity measurements,” Physics Letters A, vol. 377, no. 3-4, pp. 243–249, 2013. [14] T. A. Jesus, L. C. A. Pimenta, L. A. B. Torres and E. M. A. M. Mendes, “Consensus for double-integrator dynamics with velocity constraints,” International Journal of Control, Automation and Systems, vol. 12, no. 5, pp. 930–938, 2014. [15] H. Hu, L. Yu, G. Chen and G. Xie, “Second-order consensus of multi-agent systems with unknown but bounded disturbance,” International. Journal of Control, Automation and Systems, vol. 11, no. 2, pp. 258–267, 2013. [16] S. Yu and X. Long, “Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode,” Automatica, vol. 54, pp. 158–165, 2015. [17] X. He and Q. Wang, “Distributed finite-time leaderless consensus control for double-integrator multi-agent systems with external disturbances,” Applied Mathematics and Computation, vol. 295, pp. 65–76, 2017. [18] C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue and V. Feliu-Batlle, Fractional-order Systems and Controls: Fundamentals and Applications, Springer-Verlag, London, 2010. [19] الهه اسدی و سعید بلوچیان، «کنترل مقاوم-تطبیقی مرتبهکسری موتور سری جریان مستقیم»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 817-827، پاییز 1396. [20] پوریا جعفری، محمد تشنه لب و مهسان توکلی کاخکی، «طراحی کنترلکننده فازی تطبیقی مستقیم برای سیستمهای مرتبهکسری غیرخطی بهکمک جبران ساز»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 929-917، پاییز 1396. [21] J. Shen and J. Cao, “Necessary and sufficient conditions for consensus of delayed fractional‐order systems,” Asian Journal of Control, vol. 14, no. 6, pp. 1690–1697, 2012. [22] J. Shen, J. Cao and J. Lu, “Consensus of fractional-order systems with non-uniform input and communication delays,” Proceedings of the Institution of Mechanical Engineers, Part. I: Journal of Systems and Control Engineering, vol. 226, no. 2, pp. 271-283, 2012. [23] X. Yin and S. Hu, “Consensus of fractional‐order uncertain multi‐agent systems based on output feedback,” Asian Journal of Control, vol. 15, no. 5, pp. 1538–1542, 2013. [24] Z. Yu, H. Jiang and C. Hu, “Leader-following consensus of fractional-order multi-agent systems under fixed topology,” Neurocomputing, vol. 149, pp. 613–620, 2015. [25] H. Y. Yang, X. L. Zhu and K. C. Cao, “Distributed coordination of fractional order multi-agent systems with communication delays,”Fractional Calculus and Applied Analysis, vol. 17, no. 1, pp. 23–37, 2014. [26] G. Ren and Y. Yu, “Robust consensus of fractional multi-agent systems with external disturbances,” Neurocomputing, vol. 218, pp. 339–345, 2016. [27] J. Bai, G. Wen, A. Rahmani and Y. Yu, “Consensus problem with a reference state for fractional-order multi-agent systems,” Asian Journal of Control, vol. 19, no. 3, pp. 1009-1018, 2017. [28] W. Zhu, W. Li, P. Zhou and C. Yang, “Consensus of fractional-order multi-agent systems with linear models via observer-type protocol,” Neurocomputing, vol. 230, pp. 60–65, 2017. [29] C. Yang, W. Li and W. Zhu, “Consensus analysis of fractional-order multiagent systems with double-integrator,” Discrete Dynamics in Nature and Society, vol. 2017, 9256532, 2017. [30] W. Zhu, B. Chen and J. Yang, “Consensus of fractional-order multi-agent systems with input time delay,” Fractional Calculus and Applied Analysis, vol. 20, no. 1, pp.52-70, 2017. [31] X. Ma, F. Sun, H. Li and B. He, “The consensus region design and analysis of fractional-order multi-agent systems,” International Journal of Systems Science, vol. 48, no. 3, pp. 629-636, 2017. [32] X. Liu, Z. Zhang and H. Liu, “Consensus control of fractional-order systems based on delayed state fractional order derivative,” Asian Journal of. Control, doi: 10.1002/asjc.1493, 2017. [33] F. Wang and Y. Yang, “Leader-following exponential consensus of fractional order nonlinear multi-agents system with hybrid time-varying delay: A heterogeneous impulsive method,” Physica A: Statistical Mechanics and its Applications, vol. 482, pp. 158-172, 2017. [34] J. Yu and L. Wang, “Group consensus in multi-agent systems with switching topologies and communication delays,” Systems & Control Letters, vol. 59, no. 6, pp. 340-348, 2010. [35] J. Yu and L. Wang, “Group consensus of multi-agent systems with directed information exchange,” International Journal of Systems Science, vol. 43, no. 2, pp. 334-348, 2012. [36] D. Xie, Q. Liu, L. Lv and S. Li, “Necessary and sufficient condition for the group consensus of multi-agent systems,” Applied Mathematics and Computation, vol. 243, pp. 870-878, 2014. [37] G. Miao and Q. Ma, “Group consensus of the first-order multi-agent systems with nonlinear input constraints,” Neurocomputing, vol. 161, pp. 113-119, 2015. [38] H. Xia and T. Huang, “Group consensus of multi-agent systems with communication delays,” Neurocomputing, vol. 171, pp. 1666-1673, 2016. [39] Q. Cui, D. Xie and F.Jiang, “Group consensus tracking control of second-order multi agent systems with directed fixed topology,” Neurocomputing, vol. 218, pp. 286-295, 2016. [40] Y. Gao, J. Yu, J. Shao and M. Yu, “Group consensus for second-order discrete-time multi-agent systems with time-varying delays under switching topologies,” Neurocomputing, vol. 207, pp. 805-812, 2016. [41] G. Wen, J. Huang, C. Wang, Z. Chen and Z. Peng, “Group consensus control for heterogeneous multi-agent systems with fixed and switching topologies,” International Journal of Control, vol. 89, no. 2, pp. 259-269, 2016. [42] J. Chen, Z. H. Guan, T. Li, D. X. Zhang, M. F. Ge and D. F. Zheng, “Multiconsensus of fractional-order uncertain multi-agent systems,” Neurocomputing, vol. 168, pp. 698–705, 2015. [43] R. Stanisławski and K. J. Latawiec, “Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for the asymptotic stability,” Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 61, no. 2, pp. 353–361, 2013. [44] R. Stanisławski and K. J. Latawiec, “Stability analysis for discrete-time fractional-order LTI state-space systems. Part II : New stability criterion for FD-based systems,” Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 61, no. 2, pp. 363–370, 2013. [45] P. Skruch, “A general fractional-order thermal model for buildings and its properties,” Advances in the Theory and Applications of Non-integer Order Systems, pp. 213-220, 2013. | ||
آمار تعداد مشاهده مقاله: 400 تعداد دریافت فایل اصل مقاله: 329 |