تعداد نشریات | 43 |
تعداد شمارهها | 1,275 |
تعداد مقالات | 15,751 |
تعداد مشاهده مقاله | 51,865,691 |
تعداد دریافت فایل اصل مقاله | 14,689,882 |
اثر تخمیر بر میزان ترکیبات فراسودمند آرد مالت برنج قهوهای | ||
پژوهش های صنایع غذایی | ||
مقاله 10، دوره 30، شماره 1، اردیبهشت 1399، صفحه 137-150 اصل مقاله (1.25 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
سمیه رحیمی؛ سولماز صارم نژاد | ||
دانشکده داروسازی، دانشگاه علوم پزشکی آزاد اسلامی، تهران | ||
چکیده | ||
زمینه مطالعاتی: امروزه توجه محققین به فرمولاسیون و تولید محصولات غذایی فراسودمند جلب شده است. با توجه به اینکه نان سهم عمدهای از تامین انرژی روزانه افراد جامعه را بر عهده دارد ، میتوان طی پروسه تولید این فراورده، این محصول را با بسیاری از ترکیبات فراسودمند غنی نمود. هدف: هدف این تحقیق بررسی اثر تخمیر بر میزان ترکیبات فراسودمند آرد مالت برنج قهوهای بود. روش کار:آرد مالت برنج قهوهای توسط هر یک از میکروارگانیسمهای لاکتوباسیلوسساکئی ولاکتوباسیلوس سانفرانسیسنسیس در دو حالت جداگانهو مخلوط (یک بار با دانسیته نوری 45/1 معادل CFU/ml 108× 5/0 و بار دیگر با دانسیته نوری 9/2 معادل CFU/ml 108) در حضور مخمر نانوایی تا رسیدن به pH 9/4 تخمیر شده و تغییرات غلظت ترکیبات فراسودمند شامل ترکیبات فنولی آزاد و باند شده، ظرفیت آنتی اکسیدانی، میزان گاما آمینو بوتیریک اسید و آمینواسیدهای آزاد در نمونههای خمیر ترش مطالعه شد. از خمیر تخمیر شده با مخمر نانوایی بعنوان شاهد استفاده شد. نتایج: بر اساس نتایج حاصله، تخمیر با دو میکروارگانیسم جه بصورت تکی و چه به صورت مخلوط به ترتیب باعث افزایش و کاهش معنیدار میزان ترکیبات فنولی آزاد و باند شده نسبت به میزان این ترکیبات در آرد مالت برنج قهوهای شد (05/0(P≤. فنولهای آزاد خمیرترش تخمیر شده با لاکتوباسیلوس ساکئی بیشترین ظرفیت آنتی اکسیدانی را از خود نشان داد، درحالیکه بالاترین ظرفیت آنتی اکسیدانی ترکیبات فنولی باند شده، مربوط به خمیر حاوی مخلوط دو میکروارگانیسمبا دانسیته نوری 45/ 1 بود. خمیر ترش تخمیر شده با لاکتوباسیلوس ساکئی همچنینبیشترین میزان گاما آمینوبوتیریک اسید و آمینواسیدهای آزاد را داشت. نتیجه گیری نهایی: با توجه به نتایج، باکتری لاکتوباسیلوس ساکئی را میتوان به عنوان یک باکتری لاکتیکی مناسب جهت تخمیر آرد مالت برنج قهوهای با هدف تولید ترکیبات فراسودمند بویژه گاما آمینوبوتیریک اسید به صنایع تولید خمیر ترش معرفی نمود. | ||
کلیدواژهها | ||
آرد مالت برنج قهوهای؛ فراسودمند؛ گاما-آمینوبوتیریک اسید؛ لاکتو باسیلوس ساکئی؛ لاکتو باسیلوس سانفرانسیسنسیس | ||
مراجع | ||
پیغمبردوست ه، رییسی کاهوری ن و عیوض زاده الف، 1393، اثر خمیر ترش خشک شده حاوی مخلوط گونههای لاکتوباسیلوس بر کیفیت آرد گندم و خواص رئولوژیکی خمیر. نشریه پژوهشهای صنایع غذایی، 24(4). خراسانچی ن، پیغمبردوست ه، حجازی م و رأفت ع، 1392، استفاده از لاکتو باسیلوس پلانتاروم (ATCC1058) و روتری ATCC1655) ) به عنوان آغازگر در تهیه خمیر ترش. نشریه پژوهشهای صنایع غذایی، 33(1). Barbosa M S, Jurkiewicz C, Landgraf M, Todorov S D, Franco BDG M, 2018. Effect of proteins, glucose and NaCl on growth, biosynthesis and functionality of bacteriocins of Lactobacillus sakei subsp. sakei 2a in foods during storage at 4 °C: Tests in food models. LWT 95: 167-171.
Bourdichon F, Casaregola S, Farrokh C, Frisvad J C, Gerds M L, Hammes W P, Harnett J, Huys G, Laulund S, Ouwehand A, Powell I B, Prajapati J B, Seto Y, Schure E T, Van Boven A, Van Kerckhoven V, Zgoda A, Tuijtelaars S, & Hansen E B, 2012. Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology 154 (3) : 87–97.
Chaillou S, Christieans S, Rivollier M, Lucquin I, Champomier-Vergès M C, Zagorec M, 2014. Quantification and efficiency of Lactobacillus sakei strain mixtures used as protective cultures in ground beef. Meat Science 97(3) : 332-338.
Chandrasekara A, Shahidi F, 2012. Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbioal fermentation. Journal of functional foods 4: 226-237.
Chen H H, Chang H C, Chen Y K, 2016. An improved process for high nutrition of germinated brown rice production: Low-pressure plasma. Food Chemistry 191:120–127.
Coda R, Giuseppe Rizzello C, Gobbetti M, 2010. Use of Sourdough fermentation and pseudo-cereals and leguminous flours for making of a functional bread enriched of γ-aminobutyric acid (GABA). International Journal of Food Microbiology 137: 236–245.
Culea M, Iordache AM, Horj E, Mesaros C, Bleiziffer R, 2016. GC-MS method for amino acids determination in different biological extracts. Studiaubb chemia 61: 213-222.
Debarber C B, Prieto J A, Collar C, 1989. Reversed-phase high-performance liquid-chromatography analysis of changes in free amino-acids during wheat bread dough fermentation. Cereal Chemistry 66: 283-288.
Donker O, Stojanovska L, Ginn P, Ashton J, Vasiljevic T, 2012. Germination of grains: sources of bioactive compounds. Food Chemistry 135: 950-959.
Dordevic TM, Siler-Marinkovic S S, Dimitrijevic´-Brankovic SI, 2010. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chemistry 119: 957-963.
Federica B, Emiliano G, Gaetano P, Santina R, 2011. Evaluation of antioxidant, rheological and sensorial properties of wheat flour dough and bread containing ginger powder. Food Sience and Technology 44: 700-705.
Kariluoto S , Aittamaa M , Korhola M, Salovara H, 2006. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. International Journal of Food Microbiology 106: 137-143.
Katina K , Liukkonen K H , Kaukovirta-Norja A, Adlercreutz H, Heinonen SM, Lampi AM, Pihlava JM, Poutanen K, 2007. Fermntation induced changes in the nutritional value of native or germinated rye. Journal of Cerael Science 46: 348-355.
Laitila A, Katina K , Juvonen R, Likkonen KH, 2007. Bran fermentation as a mean to enhance technological properties and bioactivity of rye. Food Microbiology 24: 175–186.
Meignen B, Onn B, Gelinas P, Infantes M, Guilois S, Cahagnier B, 2001. Optimization of sourdough fermentation with Lactobacillus brevis and baker’s yeast. Food Microbiology 18:239-245.
Moongnagram A, Satung N, 2010. Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chemistry 122: 782-788.
Najjari A, Amairi H, Chaillou S, Mora D and Ouzari H, 2016. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei. Journal of Advanced Research 7(1) : 155-163.
Nakamura T, Yoshida A, Kawasumi T, Shima J, 2007. Isolation and characterization of a low molecular weight peptide contained in sourdough. Journal of Agricultural and Food Chemistry 55: 4871-4876.
Oguro Y, Nishiwaki T,Shinada R, Kobayashi K, Kurahashi A 2017. Metabolite profile of koji amazake and its lactic acid fermentation product by Lactobacillus sakei UONUMA.Journal of Bioscience and Bioengineering 124 (2) : 178-183.Peñuelas-Urquides K, Villarreal-TreviñoL, Silva-Ramírez B, Rivadeneyra-Espinoza L, Said-Fernández S and Bermúdez de León M, 2013. Measuring of Mycobacterium tuberculosis growth. A correlation of the optical measurements with colony forming units. Brazilian Journal of Microbiology 44 (1) , http://dx.doi.org/10.1590/S1517-83822013000100042 .
Poutanen K , Flander L , Katina K, 2009. Sourdough and cereal fermentation in a nutritional perspective. Food Microbiology 26: 693–699.
Prechtl R M, Wefers D, Jakob F, Vogel R F, 2018. Cold and salt stress modulate amount, molecular and macromolecular structure of a Lactobacillus sakei dextran. Food Hydrocolloides 82: 73-81.
Rizzello CG, Cassone A , Di Cagno R, Gobbetti M, 2013. Synthesis of angiotensin converting enzyme (ACE)-inhibitory peptides and γ-aminobutyric acid (GABA) during sourdough fermentation by selected lactic acid bacteria. Food Chemistry 56: 6936-6943.
Shao Y, Sun X , Bao J, Beta T, 2014. Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran,embryo and endosperm of white, red and black rice kernels (oryza sativa L). Journal of Cereal Science 59:2. 211-218.
Silvia del Carmen Beristain-Bauza S, Mani-López E, Palou E, López-Malo A, 2017. Antimicrobial activity of whey protein films supplemented with Lactobacillus sakei cell-free supernatant on fresh beef.Food Microbiology 62 : 207-211.
Ti H, Zhang R, Zhang M, Li Q, Weiz, Zhang Y, Tang X, Deng Y, Liu L, Ma Y, 2014. Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages. Food Chemistry 161: 337-344.
Ueno H, 2000. Enzymatic and structural aspects on glutamate decarboxylase. Journal of Molecular catalysis 10: 67-79.
Vuyst LD, Kerrebroeck SV, Leroy F, 2017. Microbial Ecology and Process Technology of Sourdough Fermentation. Elsevier Inc 100:49-160.
Wang X H , Ren HY, Lin DY, Zhu W Y , Wang W, 2013. Effects of inoculating Lactobacillus sakei starter cultures on the microbiological quality and nitrite depletion of chinese fermented sausages. Food Control 32: 591-596.
Wang CY, Wu S J, Shyu Y T, 2014. Antioxidant properties of certain cereals as affected by food-grade bacteria fermentation. Journal of Bioscience and Bioengineering 117: 449-456. | ||
آمار تعداد مشاهده مقاله: 587 تعداد دریافت فایل اصل مقاله: 329 |