تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,952,956 |
تعداد دریافت فایل اصل مقاله | 15,623,841 |
طراحی و بررسی جریان پایا و ناپایا حول پروانه باز و بسته در آب آزاد بهوسیله مدلهای SRANS و URANS | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 21، دوره 50، شماره 3 - شماره پیاپی 92، آبان 1399، صفحه 185-194 اصل مقاله (3.1 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2020.10546 | ||
نویسندگان | ||
سعید کرمی* 1؛ علی ملکی2؛ روج الله هادی پورگودرزی2؛ ابراهیم علیزاده3 | ||
1کارشناسی ارشد، گروه مهندسی هیدرودینامیک، دانشگاه صنعتی مالک اشتر، تهران، ایران | ||
2کارشناسی ارشد، گروه مهندسی معماری کشتی، دانشگاه صنعتی مالک اشتر، تهران، ایران | ||
3دانشیار، گروه مهندسی مکانیک، دانشگاه صنعتی مالک اشتر، تهران، ایران | ||
چکیده | ||
برای یک شناور سطحی پروانه استاندارد طراحی شد، سپس با یک برنامه کامپیوتری هندسه سهبعدی پروانه بر مبنای دادههای دوبعدی تولید و شبکهبندی و میدان جریان حول پروانه بر مبنای روش دینامیک سیالات محاسباتی حل گردید در این راستا از شبکهبندی ترکیبی و شرط پریودیک با برش اسپیلاین استفاده شد. در مدلسازی عددی از یک مدل دائم و سه مدل غیر دائم استفاده شد. نتایج مورد اعتبارسنجی و عدم قطعیت خطای گسسته سازی شبکهبندی محاسبه گردید. نتایج دارای تطابق مناسبی با نتایج آّب آزاد بود. نقطه جدایش جریان تخمین زده و دنباله پروانه موردبررسی قرار گرفت. بهمنظور مدلسازی گذار لایهمرزی از دو مدل گذار گاما و گاما رینولدز تتا استفاده شد. برای آشکارسازی گردابه و دنباله پروانه از معیار کیو استفاده گردید. جدایش جریان و گذار لایهمرزی از آرام به آشفته در روش غیر دائم در ضرایب پیشروی بالا با حالات دائم متفاوت بود. اثرات افزودن دو داکت استاندارد با کد 19 آ و 37 آ با پروانه باز مورد مقایسه و بررسی قرار گرفت که داکت19 آ دارای خواص هیدرودینامیکی بهتری بود. | ||
کلیدواژهها | ||
پروانه دریایی؛ جریان دنباله پروانه؛ لایهمرزی آرام و آشفته؛ پروانه باز و بسته؛ دینامیک سیالات محاسباتی | ||
مراجع | ||
[1] Carlton J., Marine propellers and propulsion. Butterworth-Heinemann, 2012. [2] Shamsi R. and Ghassemi H., Numerical Analysis of Marine Propulsor Using Coupled BEMT/RANS Method. Journal Of Marine Engineering, Vol. 13, pp. 1-14, 2017. [3] Bernitsas M. M., Ray D. and Kinley P., KT, KQ and efficiency curves for the Wageningen B-series propellers. 1981. [4] Observed M. and Pvan O., Further computer-analyzed data of the Wageningen B-screw series. Int Shipbuild Progr, pp. 251-62, 1975. [5] Van Lammeren W., Van Manen J. and Oosterveld M., The Wageningen B-screw series. 1969. [6] Eckhardt M. and Morgan W., A propeller design method. Vol. 63: SNAME, 1955. [7] Ekinci S., A practical approach for design of marine propellers with systematic propeller series. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, Vol. 62, pp. 123-129, 2011. [8] Gaafary M., El-Kilani H. and Moustafa M., Optimum design of B-series marine propellers. Alexandria Engineering Journal, Vol. 50, pp. 13-18, 2011. [9] Nguyen T. and Ikeda Y., A Numerical Study on Open-Water Propeller Characteristics. in Conference of JASNAOE Annual Spring Meeting, At Kobe, Japan, 2015. [10] Elghorab M. A., Al E., Elwetedy S. and Kotb A., Open Water Performance of a Marine Propeller Model Using CFD. in Proceedings of International Conference on Fluid Dynamics, ICFD11, At Alexandria, Egypt, Vol. 11, 2013. [11] Hayati A. N., Hashemi S. M., and Shams M., A study on the behind-hull performance of marine propellers astern autonomous underwater vehicles at diverse angles of attack. Ocean Engineering, Vol. 59, pp. 152-163, 2013. [12] Paik K.-J., Numerical study on the hydrodynamic characteristics of a propeller operating beneath a free surface. International Journal of Naval Architecture and Ocean Engineering, Vol. 9, pp. 655-667, 2017. [13] ولی ع، سرانجام ب.، کمالی ر.، ربیعی و.، تحلیل عددی عملکرد پروانه در نزدیک سطح آب, مهندسی مکانیک مدرس, جلد 16، ص 291-299 1395. [14] Boucetta D. and Imine O., Numerical Simulation of the Flow around Marine Propeller Series. Journal of Physical Science and Application, vol. 6, pp. 55-61, 2016. [15] Chamanara M. and Ghassemi H., Hydrodynamic Characteristics of the Kort-Nozzle Propeller by Different Turbulence Models. American Journal of Mechanical Engineering, Vol. 4, pp. 169-172, 2016. [16] Arief I. S., Musriyadi T. B. and Mafera A. D. A. J., Analysis Effect of Duct Length–Nozzle Diameter Ratio and Tip Clearance Variation on the Performance of K-Series Propeller. International Journal of Marine Engineering Innovation and Research, Vol. 2, 2017. [17] Bhattacharyya A., Neitzel J. C., Steen S., Abdel-Maksoud M. and Krasilnikov V., Influence of flow transition on open and ducted propeller characteristics. in Fourth International Symposium on Marine Propulsors, Austin, Texas, USA, 2015. [18] Wang X. and Walters K., Computational analysis of marine-propeller performance using transition-sensitive turbulence modeling. Journal of Fluids Engineering, Vol. 134, p. 071107, 2012. [19] Molland A. F., Turnock S. R. and Hudson D. A., Ship resistance and propulsion. Cambridge university press, 2017. [20] Bertram V., Practical ship hydrodynamics. Elsevier, 2012. [21] Breslin J. P. and Andersen P., Hydrodynamics of Ship Propellers. Cambridge Ocean Technology Series, 3. ed, 1995. [22] Versteeg H. K. and Malalasekera W., An introduction to computational fluid dynamics. the finite volume method, Pearson Education, 2007. [23] Menter F. and Egorov Y., Development and application of SST-SAS turbulence model in the DESIDER project. Advances in Hybrid RANS-LES Modelling, pp. 261-270, 2008. [24] Malan P., Suluksna K., and Juntasaro E., Calibrating the gamma-Re_theta transition model for commercial CFD. in 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 2009, p. 1142. [25] STAR-CCM+ Documentation, 2017. [26] Schlichting H. and Gersten K., Boundary Layer Theory. Springer, 2016. [27] Lamb H., Hydrodynamics, 6 ed. New York: Dover, 1945. [28] Luget H. J., The dilemma of defining a vortex. Springer, pp. 309-321, 1979. [29] Hunt J. C. R., Wray A. A., and Moin P., Eddies, stream and convergence zones in turbulent flows. CTR1988. [30] Chong M. S., Perry A. E., and Cantwell B. J., A general classification of three- dimensional flow field. phys.Fluids, p. 765/777, 1990. [31] Moore G., Cyclic and Symmetric Boundary Conditions Ways to Reduce the Size of Numerical Models. Tarpoff Moore Engineering, Inc, pp. 513-932-9777, 2015. [32] ملکی ع.، هادی پورگودرزی ر. ا، علیزاده ا.، کرمی س.، احمدی ع.، مطالعه عددی عملکرد پروانه در آب آزاد با در نظر گرفتن شروط مرزی پریودیک, سومین کنفرانس ملی - مهندسی مکانیک, مشهد-اسفراین, 2017. [33] Jessup S., Experimental data for RANS calculations and comparisons (DTMB P4119). in 22nd ITTC Propulsion Committee Propeller RANS/Panel Method Workshop, Grenoble, Apr. 1998, 1998. [34] Jessup S. D., Measurement of multiple blade rate unsteady propeller forces. DAVID TAYLOR RESEARCH CENTER BETHESDA MD1990. [35] Kulczyk J., SKRABURSKI Ł. and ZAWIŚLAK M., Analysis of screw propeller 4119 using the Fluent system. Archives of civil and mechanical engineering, Vol. 7, pp. 129-137, 2007. [36] Richardson L. F., The approximate arithmetical solution by differece of physical probelems involving differential equations, with an application to the stresses in a masonry dam. Trans. R. Soc, Vol. 210, pp. 459-490, 1911. [37] Richardson L. F. and Gant J. A., The deferred approach to the limit, Trans. R. Soc, Vol. 226, pp. 636-646, 1927. | ||
آمار تعداد مشاهده مقاله: 11,551 تعداد دریافت فایل اصل مقاله: 908 |