تعداد نشریات | 44 |
تعداد شمارهها | 1,293 |
تعداد مقالات | 15,841 |
تعداد مشاهده مقاله | 52,073,339 |
تعداد دریافت فایل اصل مقاله | 14,859,370 |
بررسی ساختار ژنتیکی و تجزیه فیلوژنتیکی گوزن قرمز ایران بر اساس ناحیه D-Loop میتوکندری | ||
پژوهش های علوم دامی (دانش کشاورزی) | ||
مقاله 2، دوره 29، شماره 4، اسفند 1398، صفحه 17-33 اصل مقاله (1.42 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
لیلا آقازاده؛ سعید نیکبین* ؛ فرزاد میرزایی آقجه قشلاق؛ نعمت هدایت ایوریق | ||
گروه علوم دامی دانشگاه محقق اردبیلی | ||
چکیده | ||
زمینه مطالعاتی: آنالیز ژنتیکی جمعیتهای وحشی برای حفظ تنوع زیستی و افزایش دانش در مورد بقای این گونهها و یافتن عوامل تهدید کننده و یا کمک کننده در حفظ این جمعیت مهم و ضروری میباشد. هدف: لذا مطالعه حاضر برای شناسایی توده ژنتیکی موجود، بررسی چگونگی روابط، شکلگیری و تنوع ژنتیکی مارالهای ایرانی با بهرهگیری از اطلاعات توالی ناحیه D-Loop از ژنوم میتوکندریایی انجام شد. روش کار: جهت انجام پژوهش حاضر نمونههای خون، مو یا بافت 78 رأس مارال اخذ و DNA آنها استخراج گردید. ناحیه D-Loop از ژنوم میتوکندریایی با استفاده آغازگرهای اختصاصی با روش PCR تکثیر شده و تمامی محصولات PCR توالییابی گردید. سپس توالیهای مورد نظر با استفاده از نرم افزارهای BioEdit جهت بررسی تنوع نوکلئوتیدی همتراز شد، با استفاده از نرم افزار Mega ، درخت فیلوژنتیکی رسم گردید. توالیهای مارال با استفاده از نرم افزار DnaSp آنالیزشد. نتایج: نتایج حاصل منجر به شناسایی جهشهایی گردید که به ایجاد 5 هاپلوتیپ برای ناحیه D-Loop منتهی شد و تنوع هاپلوتیپی، تنوع نوکلئوتیدی و متوسط تفاوت نوکلئوتیدی برای ناحیه D-Loop به ترتیب 218/0 ، 0007/0 و 491/0 بهدست آمد. شاخصهای تنوع ژنتیکی نشان داد که شش جمعیت مورد بررسی مارال احتمالا تجربه باتل نک را پشت سر گذاشته است. نتیجهگیری: در پرتو نتایج حاصل از تجزیه و تحلیل جمعیتها از این هاپلوتیپها ، میتوان نتیجهگیری کرد که نوسانات اخیر در اندازه جمعیت و وقفه در جریان ژن به دلیل انتقال گوزنهای قرمز یک جمعیت به سایر زیستگاهها در گذشته باشد. | ||
کلیدواژهها | ||
تنوع زیستی؛ فیلوژنی؛ مارال؛ D-Loop؛ mtDNA | ||
مراجع | ||
Alijani S, 2009. Tracking major genes in farm animals using business statistics and molecular markers, PhD thesis. Karaj Faculty of Agriculture. University of Tehran.
Alinaghizadeh H, Mohammad Abadi MR, Zakizadeh S, 2010. Exon 2 of BMP15 gene polymorphismin Jabal Barez Red Goat. Journal of Agricultural Biotechnology 2: 69-80.
Amills M, Capote J, Tomas A, Kelly L and Obexer-Ruff G, 2004. Strong phylogeographic relationships among three goat breeds from the Canary Islands. Journal of Dairy Research 71(3):257-262.
Anderson SAT, Bankier G, Barrell M, De Bruijn A, Couson J, Drouin I, Nierlich B, Roe F, Sanger PH and Young IG, 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457-465.
Azor PJ, Monteagudo LV, Luque M, Tejedor MT and Rodero E, 2005. Phylogenetic relationships among Spanish goats breeds. Animal Genetics 36(5): 423–425.
Bailes SM, Devers JJ, Kirby JD and Rhoads DD, 2007. An Inexpensive, Simple Protocol for DNA Isolation from Blood for High-Throughput Genotyping by Polymerase Chain Reaction or Restriction Endonuclease Digestion. Poultry Science 86:102–106.
Boom R, Sol CJA, Salimans MMM, Jasen CL, WertheimVan Dillen PME and Van Der Noordaa J, 1990. Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology 28(3): 495-503.
Boore JL, 1999. Animal mitochondrial genomes. Nucleic Acids Research 27:1767-1780.
Borowski Z, wisøocka M, Matosiuk P, Mirski K, Krysiuk M, Czajkowska A, Borkowska M, 2016. Purifying Selection, Density Blocking and Unnoticed Mitochondrial DNA Diversity in the Red Deer, Cervus elaphus. The Journal of Animal and Plant Sciences 119: 163-191.
Cavalli –Sforza, LL, Feldman, MW, 2003. The application of molecular genetics approaches to the study of human evolution. Natura and Genetics. 33: 266-275.
Bruford M, Bradley D and Luikart G, 2003. DNA markers reveal the complexity of livestock domestication. Nature Reviews Genetics 3: 900–910.
Colgan S, Obrian L, Maher M, Shilton N, McDonnell K and Ward S, 2001. Development of a DNA- based assey for species identification in meat and bone meal. Journal of Food Research 34: 409-414.
Colombo F, Marchisio E, Pizzini A and Cantoni C, 2002. Identification of the goose species (Anser anser) in italian mortara salami by DNA sequencing and a polymerase chain reaction with an original primer pair. Journal of Materials Science 61:261-294.
Conrad AM and Davis SK, 2001. Molecular Hnshghts into the Evolution of the Family Bovidae: A Nuclear DNA Perspective. Journal Molecular Biology Evolution 18:1220-1230.
Ettore Randi NM, Françoise CH, Amélie B and Emmanuel JP, 2000. A mitochondrial DNA control region phylogeny of the Cervinae, Speciation in Cervus and implications for conservation. Animal Conservation the Zoological Society of London Vol. 4, pp. 10.
Epperson BK, 2003. Geographical Genetics. Princeton: Princeton University Press.
Frank KN, Bleier B, Toth L, Suger P, Horn E, Barta L, Orosz V, 2017. The presence of Balkan and Iberian red deer (Cervus elaphus) mitochondrial DNA lineages in the Carpathian Basin. Mammalian Biology - Zeitschrift für Säugetierkunde 86: 48-55.
Geist V, 1991. Bones of contention revisited: did antlers enlarge with sexual selection as a consequence of neonatal security strategies? Applied Animal Behaviour Science 29: 453–469.
Geist V, 1999. Deer of the World. Their Evolution, Behaviour and Ecology. Swan Hill Press, UK.
Ghovvati S, Nassiri MR, Mirhoseini SZ, Moussavi AH and Javadmanesh A, 2009. Fraud identification in industrial meat products by multiplex PCR assay. Food Control 20: 696-699.
Groves T, Katis P, Madden Z, Manickam K, Ramsdem D, Wu G and Guidos CJ, 1995. In vitro maturation of clonal CD4+CD8+ cell lines in response to TCR engagement. Journal of Immunology 154: 5011-5022.
Haghi H, Malekian M, Montazami S, Khordazadeh P, Goshtasib Miogony H, 2012. Determination of genetic purity of Iranian yellow deer populations. The 17th National Congress and the 5th International Congress on Biology of Iran.
Hiendleder S, Lewalski H, Wassmuth R and Janke A, 1998. The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype. Journal Molecular Evolution 47: 441-448.
Hiendleder S, Mainz K, Plante Y and Lewalski H, 1998. Analysis of mtDNA indicate that domestic sheep are derived from two different ancestal maternal sources: no evidence for contribution from urial and argali sheep. Journal heredity 89: 113-120.
Hiendleder S, Kaupe B and Janke A, 2008. Complete mitochondrial genomes of Bos taurusand Bos indicus provide new insights into intraspecies variation, taxonomy and domestication. Cytogenet. Genome Research 120: 150-156.
Hmwe SS, Zachos FE, Eckert I, Lorenzini R, Fico R, Hartl GB, 2006. Conservation genetics of the endangered red deer from Sardinia and Mesola with further remarks on the phylogeography of Cervus elaphus corsicanus. Biological Journal of the Linnean Society 88: 691-701.
Javanroh Ali Abad A, 2002. Genetic Diversity Evaluation of Six Native Iranian Goat Lumps Using RAPD Marker. Master's Degree in Animal Science Karaj Agricultural College. Tehran University p.74.
Jazin E, Soodyall H, Jalonen P, Lindholm E, Stoneking M and Gyllensten U, 1998. Mitochondrial mutation rate revisited: hot spots and polymorphism. Nature Genetics 18: 109-110.
Kiabi BH, Zehzad B, Darreh Shouri BF, Majnoonian H and Meigouni HG, 1994. Golestan National Park [in Farsi]. – Department of the Environment. Tehran, 204 pp.
Kiabi BH, Salmann Mahini A, Rezaie HR and Mir Karimi SH, 1997. A model for Habitat Evaluation (Wildlife habitat evaluation in GNP) [in Persian]. Department of Environment and Gorgan University 295 pp.
Kim KH and Lee JH, 2002. Phylojenic relationships of Asian and European Pig breeds determined by mitochondrial DNA D-LOOP sequence pholymorphism. Journal of Animal Genetics 33:19-25.
Kitano T, Umetsu KS, Lockley AK and Osawa M, 2007. Two universesal primer sets for species Identification amang vertebrates. International Journal of Legal Medicine 121. 5: 16-20.
Lorenzini R, Garofalo L, 2015. Insights into the evolutionary history of Cervus (Cervidae, tribe Cervini) based on Bayesian analysis of mitochondrial marker sequences, with first indications for a new species. Journal of Zoological Systematics and Evolutionary Research, 53: 340-349.
Ludt CJ, Schroeder W, Rottmann O, Kuehn R, 2004. Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Molecular Phylogenetics and Evolution.31: 1064-1083.
Lundrigan T, Reist JD, Ferguson M, 2005. Microsatellite genetic ariation within and among Arctic charr (Salvelinus alpines) from aquaculture and natural populations in North America. Aquaculture 244: 63-75.
Manjunath B, Paramod K and Rout K, 2003. Phelogeography and origin op Indian domestic goats. Journal Molecular Biology Evolution 21: 223-233.
Mannen H, Kohno M, Nagata Y, Tsuji S and Bradley DG, 2004. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle. Journal Molecular Phylogenet Evolution 32: 539-544.
Nabata K, Kaji K, Nagata J, Masuda R, 2007. Genetic struchure changes of expanding sika deer (Cervus nippon) populations in central and western Hokkaido, revealed by mitochondrial DNA analysis. Mammal Study Vol. 33, pp. 17-22.
Naderi S, Rezaei HR, Taberlet P, Zundel S, Rafat SA, Naghash HR, el-Barody MA, Ertugrul O, Pompanon F and Econogene C, 2007. Large-Scale Mitochondrial DNA Analysis of the Domestic Goat Reveals Six Haplogroups with High Diversity. Plos one 10:1-10.
Natonek-Wisnievska MN, Slota E and Kalisz B, 2010. Use of cytochrome b polymorphism for species identification biological material derived from cattle, sheep, goqt, deer and red deer. Folia biologica 58: 47-50.
Rousset F, 2004. Genetic Structure and Selection in Subdivided Populations. Princeton: Princeton University Press.
Saccone E, 1991, Commento a Zen: saggio sul testo di Svevo. Mulino- Bologna.
Tajima F, 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 85: 3514-3517.
Tamura K, Dudley J, Nei M, Kumar S, 2007. Molecular Evolutionary Genetics Analysis (MEGA). Center of Evolutionary Functional Genomics Biodesign Institute. Arizona State University. 229p.
Teletchea F, Maudet C and Hanni C, 2005. Food and forensic molecular identification: update and challenges. Trends Biotechnol 23: 359-366.
Trense W, 1989. The Big Game of the World. Paul Parey. Hamburg. Vrba A, Schaller GB, 2000. Antelopes, Deer, and Relatives. Fossil Record, Behavioral Ecology, Systematics and Conservation. Yale University Press.
Viard F, Justy F, Jarne P, 1997. Population dynamics inferred from temporal variation at microsatellite loci in the selfing snail Bulinus trancatus. Genetics 14: 6973-6982.
Whitehead GK, 1972. The Deer of the World. Constable, London. Kiabi BH, 1978. Ecology and management of Maral (Cervus elaphus maral) in Northern Iran. 1976-78. Ph.D. Dissertation, Michigan State University, 83.
Xin C, Chen H, Lei C, Wang S, Xue K and Zhang B, 2007. mtDNA diversity and genetic lineages of eighteen cattle breeds from Bos taurus and Bos indicus in China. Genetica 131: 175–183.
Yuasa T, Nagata J, Hamasaki S, Tsuruga H, Furubayashi K, 2006. The impact of habitat fragmentation on genetic structure of the Japanese sika deer (Cervus nippon) in southern Kantoh, revealed by mitochondrial D-loop sequences. EcologicalResearch, 22: 97-103.
Zamani V, Rezaei HR, Baziyan S, Aghili SM, Shabani A, Asadi Aghbaghaghi M, Zamani N, 2014. Molecular Approach for Identification of Couple Based on Multidrug-Regulated Mitochondrial Polymorphism. Journal of Agricultural Biotechnology pp. 73-63.
Zhao Q, Xu H, Li D, 2017. Complete mitochondrial genome and phylogenetic analysis of Sichuan deer (Cervus elaphus macneilli). Conservation Genetic Resources 10: 431-435. | ||
آمار تعداد مشاهده مقاله: 692 تعداد دریافت فایل اصل مقاله: 511 |