تعداد نشریات | 44 |
تعداد شمارهها | 1,298 |
تعداد مقالات | 15,883 |
تعداد مشاهده مقاله | 52,116,573 |
تعداد دریافت فایل اصل مقاله | 14,887,925 |
Analytical approximations of one-dimensional hyperbolic equation with non-local integral conditions by reduced differential transform method | ||
Computational Methods for Differential Equations | ||
مقاله 10، دوره 8، شماره 3، آبان 2020، صفحه 537-552 اصل مقاله (699.32 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2020.29576.1424 | ||
نویسندگان | ||
Seyyedeh Roodabeh Moosavi1؛ Nasir Taghizadeh1؛ Jalil Manafian* 2 | ||
1Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, P.O.Box 1914, Rasht, Iran. | ||
2Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran. | ||
چکیده | ||
In this work, an initial-boundary value problem with a non-classic condition for the one-dimensional wave equation is presented and the reduced differential transform method is applied to ascertain the solution of the problem. We will investigate a new kind of non-local boundary value problems in which are the solution of hyperbolic partial differential equations with a non-standard boundary specification. The advantage of this method is its simplicity in using, it solves the problem directly and straightforward without using perturbation, linearization, Adomian’s polynomial or any other transformation and gives the solution in the form of convergent power series with simply determinable components. Also, the convergence of the method is proved and seven examples are tested to shows the competency of our study. | ||
کلیدواژهها | ||
Reduced differential transform method؛ Non-classic condition؛ Hyperbolic partial differential equation؛ Approximate solutions؛ Adomian’s polynomial | ||
آمار تعداد مشاهده مقاله: 480 تعداد دریافت فایل اصل مقاله: 378 |