| تعداد نشریات | 45 |
| تعداد شمارهها | 1,447 |
| تعداد مقالات | 17,752 |
| تعداد مشاهده مقاله | 57,935,899 |
| تعداد دریافت فایل اصل مقاله | 19,542,220 |
An approach for solving the generalized fractional Burgers-Fisher equation | ||
| Computational Methods for Differential Equations | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 10 دی 1404 اصل مقاله (1.07 M) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22034/cmde.2025.69053.3389 | ||
| نویسندگان | ||
| Zaid Alkhafaji* ؛ Ali Khani | ||
| Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran. | ||
| چکیده | ||
| This study introduces an approach for finding an approximate solution to the time fractional generalized Burgers-Fisher equation. The core idea of the method is to transform the nonlinear partial differential equation into a linear one through two dimensional Haar wavelet with iteration technique. Subsequently, the Haar wavelet collocation method is employed to address the linear equation derived in the prior step. Numerical simulations are conducted to rigorously evaluate the performance of the proposed algorithm. The results demonstrate that the scheme is not only computationally efficient but also highly accurate across various parameter configurations, including different fractional orders ($\alpha$), nonlinearity strengths ($\eta$), and coefficients ($\xi, \beta$). Consequently, this work establishes the presented Haar wavelet iterative method as a powerful and reliable tool for solving this important class of nonlinear fractional differential equations. | ||
| کلیدواژهها | ||
| Fractional PDEs؛ Fractional derivatives and integrals؛ Haar wavelet؛ Operational matrix؛ Collocation method | ||
|
آمار تعداد مشاهده مقاله: 3 تعداد دریافت فایل اصل مقاله: 2 |
||