| تعداد نشریات | 45 |
| تعداد شمارهها | 1,433 |
| تعداد مقالات | 17,642 |
| تعداد مشاهده مقاله | 57,427,311 |
| تعداد دریافت فایل اصل مقاله | 19,181,089 |
طراحی و تحلیل سامانه مدیریت گرمایی ماژول باتری خودرویی لیتیوم- یون با استفاده از میکروکانال در نرخهای مختلف تخلیه | ||
| مهندسی مکانیک دانشگاه تبریز | ||
| دوره 55، شماره 4 - شماره پیاپی 113، بهمن 1404، صفحه 73-82 اصل مقاله (611.56 K) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22034/jmeut.2025.61677.3413 | ||
| نویسندگان | ||
| محمد پارسا دولت یار1؛ علی قاسمیان* 2؛ مهدی اکبرشاهی3؛ عطیه طلایی3؛ امیررضا فتحی3 | ||
| 1کارشناسی ارشد، دانشکده مهندسی خودرو، دانشگاه علم و صنعت ایران، تهران، ایران | ||
| 2استادیار، دانشکده مهندسی خودرو، دانشگاه علم و صنعت ایران، تهران، ایران | ||
| 3کارخانه نوآوری آمپر، تهران، ایران | ||
| چکیده | ||
| حفظ دمای باتری لیتیوم- یون در محدودهی عملکردی و توزیع یکنواخت دما تأثیر بسزایی در ایمنی و عملکرد آن دارد. در این پژوهش، عملکرد سیستم مدیریت گرمایی بسته باتری در مقیاس خودرویی شامل 385 باتری لیتیوم یون 21700، طی نرخ جریانهای C1، C2 و C3 و فرآیند پیشگرمایش به صورت عددی بررسی شده است. سامانه مدیریت گرمایی به کار گرفته شده در این پژوهش از نوع میکرکانالهای موجدار آلومنیومی است و در دو الگو میکروکانال پایه و بهبود یافته با تمرکز بر زاویه تماس باتری و میکروکانال و تعداد اتصالاتU شکل مورد بررسی قرار گرفت. در نرخ جریانهای بالاتر از C1 با فرض حداکثر سرعت ورودی میکروکانال 41/1 متر بر ثانیه (به منظور حفظ رژیم جریان لایهای)، سیستم خنککاری توانایی حفظ شرایط دمایی به صورت پایا را ندارد. تحت این شرایط سیستم خنککاری توانایی حفظ شرایط دمایی برای 257 ثانیه برای نرخ جریان C2 و 86 ثانیه برای نرخ جریان C3 را دارد. فرآیند پیشگرمایش با دمای اولیه 20- درجه سلسیوس نیز طی 885 ثانیه محقق شد. همچنین استفاده از طرح بهبودیافته راندمان گرمایی را تا میزان 3/39% افزایش داد. | ||
| کلیدواژهها | ||
| مدیریت گرمایی؛ خودروی برقی؛ بسته باتری لیتیوم- یون 21700؛ میکروکانال؛ راندمان حرارتی؛ پیش گرمایش | ||
| مراجع | ||
|
[1] Zhang Z, Li W, Zhang C, Chen J. Climate control loads prediction of electric vehicles. Applied Thermal Engineering. 2017;110:1183-8. [2] Nazari A, Farhad S. Heat generation in lithium-ion batteries with different nominal capacities and chemistries. Applied Thermal Engineering. 2017;125:1501-17. [3] Wang Y-F, Wu J-T. Performance improvement of thermal management system of lithium-ion battery module on purely electric AUVs. Applied Thermal Engineering. 2019;146:74-84. [4] Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. Applied thermal engineering. 2019;149:192-212. [5] Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, Zhang M. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. Journal of power sources. 2014;255:294-301. [6] Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. Journal of the electrochemical society. 2011;158(3):R1. [7] Tete PR, Gupta MM, Joshi SS. Numerical investigation on thermal characteristics of a liquid-cooled lithium-ion battery pack with cylindrical cell casings and a square duct. Journal of Energy Storage. 2022;48:104041. [8] Basu S, Hariharan KS, Kolake SM, Song T, Sohn DK, Yeo T. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system. Applied Energy. 2016;181:1-13. [9] میر محمدی ع, الهیاری س. طراحی سیستم خنککاری برای باتری لیتوم-یون در نرخ دشارژهای مختلف با مدلسازی الکتریکی-حرارتی. مهندسی مکانیک دانشگاه تبریز. 2021;51(1):239-46. [10] رحمانیان کوشککی ح, رحمانیان س. بررسی عددی مدیریت گرمایی باتری لیتیوم- یون با استفاده از مادهی تغییر فاز دهنده و فوم فلزی. مهندسی مکانیک دانشگاه تبریز. 2024;54(3):123-32. [11] Xie L, Huang Y, Lai H. Coupled prediction model of liquid-cooling based thermal management system for cylindrical lithium-ion module. Applied Thermal Engineering. 2020;178:115599. [12] Tousi M, Sarchami A, Kiani M, Najafi M, Houshfar E. Numerical study of novel liquid-cooled thermal management system for cylindrical Li-ion battery packs under high discharge rate based on AgO nanofluid and copper sheath. Journal of Energy Storage. 2021;41:102910. [13] Li W, Garg A, Xiao M, Gao L. Optimization for Liquid Cooling Cylindrical Battery Thermal Management System Based on Gaussian Process Model. Journal of Thermal Science and Engineering Applications. 2020;13(2). [14] Tang Z, Min X, Song A, Cheng J. Thermal management of a cylindrical lithium-ion battery module using a multichannel wavy tube. Journal of Energy Engineering. 2019;145(1):04018072. [15] فرهنگ مهر و, شافعی آسایش ا. مطالعه عددی جریان نانوسیال و انتقال گرما در یک میکروکانال با یک ریب آشوب ساز جریان. مهندسی مکانیک دانشگاه تبریز. 2020;50(1):147-54. [16] آهنگر زنوزی س, عزیزی ع. بررسی عددی انتقال گرمای جریان سیال در کانال شامل استوانه با دو مولد گردابه انعطافپذیر تحت شرایط جریان ورودی سینوسی. مهندسی مکانیک دانشگاه تبریز. 2025;54(4):67-76. [17] Cha H-R, Angani A, Hwang M-H. Thermal management of lithium-ion batteries by novel designs of wavy cold plates: Performance comparison. Journal of Energy Storage. 2023;73:109303. [18] موسوی سع. بهینه سازی مبادلهکن گرمایی فشرده باتری ولتاژ بالای خودروی هیبریدی بهمنظور افزایش توان گرمایی و کاهش جرم. مهندسی مکانیک دانشگاه تبریز. 2025;55(2):1-9. [19] Zhao C, Cao W, Dong T, Jiang F. Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow. International journal of heat and mass transfer. 2018;120:751-62. [20] Pulugundla G, Dubey P, Wu Z, Wang Q, Srouji AK, editors. Thermal Management of Lithium Ion Cells at High Discharge Rate using Submerged-Cell Cooling. 2020 IEEE Transportation Electrification Conference & Expo (ITEC); 2020 23-26 June 2020. [21] Heubner C, Schneider M, Michaelis A. Detailed study of heat generation in porous LiCoO2 electrodes. Journal of Power Sources. 2016;307:199-207. [22] Bernardi D, Pawlikowski E, Newman J. A General Energy Balance for Battery Systems. Journal of The Electrochemical Society. 1985;132(1):5. [23] Moghaddam SMH. Designing battery thermal management systems(BTMS) for cylindrical Lithium-ion battery modules using CFD [Master of Science Thesis]2019. [24] Yu X, Wu Q, Huang R, Chen X. A Novel Heat Generation Acquisition Method of Cylindrical Battery Based on Core and Surface Temperature Measurements. Journal of Electrochemical Energy Conversion and Storage. 2021;19:1-17. [25] Lin C, Wen H, Liu L, Liu S, Ma T, Fan B, Wang F. Heat generation quantification of high-specific-energy 21700 battery cell using average and variable specific heat capacities. Applied Thermal Engineering. 2021;184:116215. [26] ASHRAE AHF. American society of heating, refrigerating and air-conditioning engineers. Inc, Atlanta. 2009. [27] Guo J, Liu F, Xu Y, Han B, Li M. Optimization design and numerical study of liquid-cooling structure for cylindrical lithium-ion battery pack. Journal of Energy Engineering. 2021;147(4):04021017. | ||
|
آمار تعداد مشاهده مقاله: 129 تعداد دریافت فایل اصل مقاله: 34 |
||