| تعداد نشریات | 45 |
| تعداد شمارهها | 1,418 |
| تعداد مقالات | 17,496 |
| تعداد مشاهده مقاله | 56,545,626 |
| تعداد دریافت فایل اصل مقاله | 18,768,157 |
Semi-analytic solutions of an SIR-type epidemic model using the Taylor matrix method | ||
| Computational Methods for Differential Equations | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 09 آبان 1404 اصل مقاله (2.09 M) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22034/cmde.2025.65128.2978 | ||
| نویسندگان | ||
| Revina Dian Agustine؛ Jonathan Hoseana* ؛ Benny Yong | ||
| Center for Mathematics and Society, Faculty of Science, Parahyangan Catholic University, Bandung 40141, Indonesia. | ||
| چکیده | ||
| We apply the Taylor matrix method to generate semi-analytic solutions of a recently introduced SIR-type epidemic model for the spread of COVID-19, focusing on the case where the actual solution spirals towards a limit cycle. We assess the accuracy of these semi-analytic solutions in estimating the peaks of the epidemic waves, comparing them with semi-analytic solutions generated using the differential transform method. Since the model's analytic solution is not easily obtainable, we calculate the errors relative to the numerical solution generated by the fourth-order Runge-Kutta method with a sufficiently small step size. The results show that the errors produced by the Taylor matrix method decay faster than those produced by the differential transform method, indicating the superiority of the former method over the latter. However, this superiority comes with the trade-off of a significantly longer computation duration. | ||
| کلیدواژهها | ||
| Taylor matrix؛ SIR؛ epidemic model؛ differential transform؛ Runge-Kutta | ||
|
آمار تعداد مشاهده مقاله: 4 تعداد دریافت فایل اصل مقاله: 10 |
||